ESP8266 Arduino Core Documentation
Release 2.5.2

Ivan Grokhotkov

Jul 24, 2019

Contents:

Installing 1
[.1 Boards Manager it i it i e e e e e e e e e e e 1
1.2 Using @t VErSION o oo it e e e e e e e e e e e 1
Reference 5
2.1 Digital IO oo e e 5
2.2 Analoginput e e 5
2.3 Analog output L. e e e e e 6
24 Timingand delays L e e 6
2.5 Serial e e 7
2.6 Progmem e e e e e e e e e e 8
Libraries 9
3.1 WIFI(ESP8266WiFilibrary) o o e e e 9
32 Ticker e e e 9
33 EEPROM 9
34 IR2C (Wire library) o o o e e e e e e e 10
3.5 SPL L 10
3.6 SoftwareSerial e e 10
3.7 ESP-specific APIS e e e e e 10
3.8 mDNS and DNS-SD responder (ESP8266mDNS library) 11
3.9 SSDPresponder (ESP8266SSDP) e 11
3.10 DNSserver (DNSServer library)o e 12
301 Servo . .o o e e 12
3.12 Improved EEPROM library for ESP (ESP_EEPROM) 12
3.13 Other libraries (not included withthe IDE) 12
Filesystem 15
4.1 Flashlayout e e e e e e 15
4.2 File system limitations L L 16
43 Uploading filesto file system L 16
4.4 Filesystem object (SPIFFS) o e 17
4.5 Filesystem information Structure i e e e e e e e e e e e e e 19
4.6 Directory object (Dir) i e e e e e e e e e e e 19
477 Fileobject o .. e e e e e e e e 20
ESP8266WiFi library 23

5.1 Introduction e e e e
5.2 Class Description v v v i i e
5.3 DHagnostiCs o i e e e e e e e e e e e e e e e e
54 What'sInside? L e e e e e e
OTA Updates

6.1 Introduction L e e e e e e e e e
6.2 ArduinoIDE e
6.3 Web Browser e e e e e e e
6.4 HTTP Server e e
6.5 Stream Interface L e e e e e e
6.6 Updaterclass o o e e e e e e e e e e e
Guide to PROGMEM on ESP8266 and Arduino IDE

T.1 INrO .« . o e e e e e e e e e e e
7.2 Declare a flash string within code block. L L o
7.3 Functions to read back from PROGMEM,
7.4 How do I declare a global flash string and use it?
7.5 How doIuseinline flash strings? e
7.6 How do I declare and use data in PROGMEM?
7.7 How do I declare some data in PROGMEM, and retrieve one byte fromit.
7.8 Insummary e e e e e e e e e e e e e e e
Using GDB to Debug Applications

8.1 CLIandIDENOte e e e e e e e e e e
8.2 Preparing your application for GDB oo
8.3 StartingaDebug Session
8.4 Example Debugging Sessiono e e e e e
8.5 ESP8266 Hardware Debugging Limitations v i i vttt
Boards

9.1 Generic ESP8266 Module e e
0.2 Serial Adapter e e e e e e e e e e
9.3 Minimal Hardware Setup for Bootloadingand Usage
9.4 ESPtoSerial e e e
0.5 Minimal e e e e e e e e e e e e
9.6 Improved Stability L e
9.7 BootMessagesand Modes e e e e e e e e e e e
9.8 Generic ESP8285 Module e e e e e e
9.9 ESPDuino (ESP-13Module) e
9.10 Adafruit Feather HUZZAH ESP8266 i
9.11 InventOne i i i i e e e e e e e
0.12 XinaBox CWOL e e e
9.13 ESPressoLite 1.O. o e e e e e e e
9.14 ESPresso Lite 2.0 e e e e e e e e
9.15 Phoenix 1.0 L L e e
0.16 Phoenix 2.0 e e e e e e e e e e e e e e
9.17 NodeMCU 0.9 (ESP-12Module) ettt
9.18 NodeMCU 1.0 (ESP-12EModule) o v it e e e e e e e e e e e e e
9.19 Olimex MOD-WIFI-ESP8266(-DEV) e e e e
9.20 SparkFun ESP8266 Thing e
9.21 SparkFun ESP8266 Thing Dev e
0.22 SweetPea ESP-210 L e
9.23 LOLIN(WEMOS)DIR2 & mini v v vt e e e e e e e e e e e e e e e e e e e
9.24 LOLIN(WEMOS)DIminiPro et

9.25 LOLIN(WEMOS)DIminiLite e e
026 WeMos DI R1 o e
9.27 ESPino (ESP-12Module) e e e e
9.28 ThaiEasyElec’s ESPino e
0.20 WIfInfo e e e e e e e e e e
030 Arduino L e
9.31 4D Systemsgend IoDRange L e e e e e
0.32 Digistump Oak e e e e e e e e e e e e
0.33 WiFiduino e
9.34 Amperka WiFiSlot.
035 Seeed WioLink L e e e e e e e
0.36 ESPectro COore o i i it e e e e e e e e

10 FAQ
10.1 Tam getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?
10.2 Why esptool is not listed in “Programmer” menu? How do I upload ESP withoutit?
10.3 My ESP crashes running some code. How to troubleshootit?
104 HowcanIgetsomeextraKBsinflash?.
10.5 About WPS . . . o e
10.6 This Arduino library doesn’t work on ESP. How do I make it work?
10.7 In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFES). No
matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?
10.8 I have observed a case when ESP.restart() doesn’t work. What is the reason for that?
10.9 How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?

11 Exception Causes (EXCCAUSE)

12 Debugging
12.1 Introduction L e e e e e e e e
12.2 Informations o o e e e e e e e e

13 Stack Dumps
13.1 Introduction e e e e e e e e

14 Using Eclipse with Arduino ESP8266
141 WhattoDownload
142 Setup Arduino e e e e e e e e e e
143 Setup Eclipse o o o e e e e
14.4 Eclipsewontbuild

CHAPTER 1

Installing

1.1 Boards Manager

This is the suggested installation method for end users.

1.1.1 Prerequisites

* Arduino 1.6.8, get it from Arduino website.

¢ Internet connection

1.1.2 Instructions

e Start Arduino and open Preferences window.

e Enter https://arduino.esp8266.com/stable/package_esp8266com_index. json into Ad-
ditional Board Manager URLs field. You can add multiple URLSs, separating them with commas.

* Open Boards Manager from Tools > Board menu and find esp8266 platform.

* Select the version you need from a drop-down box.

* Click install button.

* Don’t forget to select your ESP8266 board from Tools > Board menu after installation.
For more information on the Arduino Board Manager, see:

e https://www.arduino.cc/en/guide/cores

1.2 Using git version

This is the suggested installation method for contributors and library developers.

https://www.arduino.cc/en/Main/OldSoftwareReleases#previous
https://www.arduino.cc/en/guide/cores

ESP8266 Arduino Core Documentation, Release 2.5.2

1.2.1 Prerequisites

Arduino 1.6.8 (or newer, current working version is 1.8.5)

e git

Python 2.7 (https://python.org)
* terminal, console, or command prompt (depending on your OS)

¢ Internet connection

1.2.2 Instructions - Windows 10

* First, make sure you don’t already have the ESP8266 library installed using the Board Manager (see above)
* Install git for Windows (if not already; see https://git-scm.com/download/win)

* Open a command prompt (cmd) and go to Arduino default directory. This is typically the sketch-
book directory (usually C: \users\ {username} \Document s\Arduino where the environment variable
$USERPROFILES usually contains C: \users\{username})

* Clone this repository into hardware/esp8266com/esp8266 directory.

cd $USERPROFILE%\Documents\Arduino\

if not exist hardware mkdir hardware

cd hardware

if not exist esp8266com mkdir esp8266com

cd esp8266com

git clone https://github.com/esp8266/Arduino.git esp8266

You should end up with the following directory structure in

C:\Users\{your username}\Documents\

Arduino
|
——— libraries
——— hardware
\
—-—— esp8266com
|
-—— esp8266

——— bootloaders
-—— cores

-—— doc

—-—— libraries
-—— package

——— tests

-—— tools

-—— variants

——— platform.txt
——— programmers.txt
——— README.md
—-—— boards.txt
——— LICENSE

e Initialize the submodules

2 Chapter 1. Installing

https://python.org
https://git-scm.com/download/win

ESP8266 Arduino Core Documentation, Release 2.5.2

cd $USERPROFILE%\Documents\Arduino\hardware\esp8266com\esp8266
git submodule update --init

If error messages about missing files related to SoftwareSerial are encountered during the build
process, it should be because this step was missed and is required.

* Download binary tools

cd esp8266/tools
python get.py

¢ Restart Arduino

¢ If using the Arduino IDE for Visual Studio (https://www.visualmicro.com/), be sure to click Tools - Visual Micro
- Rescan Toolchains and Libraries

* When later updating your local library, goto the esp8266 directory and do a git pull

cd %USERPROFILE%\Documents\Arduino\hardware\esp8266com\esp8266
git status
git pull

Note that you could, in theory install in C:\Program Files (x86)\Arduino\hardware however this has
security implications, not to mention the directory often gets blown away when re-installing Arduino IDE. It does have
the benefit (or drawback, depending on your perspective) - of being available to all users on your PC that use Arduino.

1.2.3 Instructions - Other OS
* Open the console and go to Arduino directory. This can be either your sketchbook directory (usually
<Documents>/Arduino), or the directory of Arduino application itself, the choice is up to you.

* Clone this repository into hardware/esp8266com/esp8266 directory. Alternatively, clone it elsewhere and create
a symlink, if your OS supports them.

cd hardware

mkdir esp8266com

cd esp8266com

git clone https://github.com/esp8266/Arduino.git esp8266

You should end up with the following directory structure:

Arduino
|
——— hardware
\
—-—— esp8266com
\
—-—— esp8266

——— bootloaders
-—— cores

—-—— doc

—-—— libraries
—-—— package

—-—— tests

—-—— tools

-—— variants

(continues on next page)

1.2. Using git version 3

https://www.visualmicro.com/

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

—-—— platform.txt
——— programmers.txt
——— README.md

——— boards.txt

——— LICENSE

e Initialize the submodules

cd esp8266
git submodule update —--init

If error messages about missing files related to SoftwareSerial are encountered during the build
process, it should be because this step was missed and is required.

* Download binary tools

cd esp8266/tools
python get.py

¢ Restart Arduino

e When later updating your local library, goto the esp8266 directory and do a git pull

cd hardware\esp8266com\esp8266
git status
git pull

4 Chapter 1. Installing

CHAPTER 2

Reference

2.1 Digital 10

Pin numbers in Arduino correspond directly to the ESP8266 GPIO pin numbers. pinMode, digitalRead, and
digitalWrite functions work as usual, so to read GPIO2, call digitalRead (2).

Digital pins 0—I15 can be INPUT, OUTPUT, or INPUT_PULLUP. Pin 16 can be INPUT, OUTPUT or
INPUT_PULLDOWN_16. At startup, pins are configured as INPUT.

Pins may also serve other functions, like Serial, I2C, SPI. These functions are normally activated by the corresponding
library. The diagram below shows pin mapping for the popular ESP-12 module.

Digital pins 6—11 are not shown on this diagram because they are used to connect flash memory chip on most modules.
Trying to use these pins as IOs will likely cause the program to crash.

Note that some boards and modules (ESP-12ED, NodeMCU 1.0) also break out pins 9 and 11. These may be used as
IO if flash chip works in DIO mode (as opposed to QIO, which is the default one).

Pin interrupts are supported through attachInterrupt, detachInterrupt functions. Interrupts may be at-
tached to any GPIO pin, except GPIO16. Standard Arduino interrupt types are supported: CHANGE, RISING,
FALLING.

2.2 Analog input

ESP8266 has a single ADC channel available to users. It may be used either to read voltage at ADC pin, or to read
module supply voltage (VCC).

To read external voltage applied to ADC pin, use analogRead (A0) . Input voltage range of bare ESP8266 is 0 —
1.0V, however some many boards may implement voltage dividers. To be on the safe side, <1.0V can be tested. If e.g.
0.5V delivers values around ~512, then maximum voltage is very likely to be 1.0V and 3.3V may harm the ESP8266.
However values around ~150 indicates that the maximum voltage is likely to be 3.3V.

To read VCC voltage, use ESP . getVcc () and ADC pin must be kept unconnected. Additionally, the following line
has to be added to the sketch:

ESP8266 Arduino Core Documentation, Release 2.5.2

[

D1~
D3~ JURX0
CHPD

- iiI wl e
o (=) PN FE
1 1 t 1
oo
I!! E%!

3

-
-
]
I

o

—u

[, P2

|

ESP-12

[
=
=

Fig. 1: Pin Functions

’ADC_MODE(ADC_VCC);

This line has to appear outside of any functions, for instance right after the #include lines of your sketch.

2.3 Analog output

analogWrite (pin, value) enables software PWM on the given pin. PWM may be used on pins O to 16. Call
analogWrite (pin, 0) to disable PWM on the pin. value may be in range from 0 to PWMRANGE, which is
equal to 1023 by default. PWM range may be changed by calling analogWriteRange (new_range).

PWM frequency is 1kHz by default. Call analogWriteFreq (new_frequency) to change the frequency. Valid
values are from 100Hz up to 40000Hz.

The ESP doesn’t have hardware PWM, so the implementation is by software. With one PWM output at 40KHz, the
CPU is already rather loaded. The more PWM outputs used, and the higher their frequency, the closer you get to the
CPU limits, and the less CPU cycles are available for sketch execution.

2.4 Timing and delays

millis () andmicros () return the number of milliseconds and microseconds elapsed after reset, respectively.

delay (ms) pauses the sketch for a given number of milliseconds and allows WiFi and TCP/IP tasks to run.
delayMicroseconds (us) pauses for a given number of microseconds.

Remember that there is a lot of code that needs to run on the chip besides the sketch when WiFi is connected. WiFi
and TCP/IP libraries get a chance to handle any pending events each time the 1oop () function completes, OR when

6 Chapter 2. Reference

ESP8266 Arduino Core Documentation, Release 2.5.2

delay is called. If you have a loop somewhere in your sketch that takes a lot of time (>50ms) without calling delay,
you might consider adding a call to delay function to keep the WiFi stack running smoothly.

There is also a yield () function which is equivalent to delay (0). The delayMicroseconds function, on the
other hand, does not yield to other tasks, so using it for delays more than 20 milliseconds is not recommended.

2.5 Serial

Serial object works much the same way as on a regular Arduino. Apart from hardware FIFO (128 bytes for TX and
RX) Serial has additional 256-byte TX and RX buffers. Both transmit and receive is interrupt-driven. Write and
read functions only block the sketch execution when the respective FIFO/buffers are full/empty. Note that the length
of additional 256-bit buffer can be customized.

Serial uses UARTO, which is mapped to pins GPIO1 (TX) and GPIO3 (RX). Serial may be remapped to GPIO15
(TX) and GPIO13 (RX) by calling Serial.swap () after Serial .begin. Calling swap again maps UARTO
back to GPIO1 and GPIO3.

Seriall uses UART1, TX pin is GPIO2. UART1 can not be used to receive data because normally it’s RX pin is
occupied for flash chip connection. To use Seriall,call Seriall.begin (baudrate).

If Seriall is not used and Serial is not swapped - TX for UARTO can be mapped to GPIO2 instead by calling
Serial.set_tx (2) after Serial.begin ordirectly with Serial.begin (baud, config, mode, 2).

By default the diagnostic output from WiFi libraries is disabled when you call Serial.begin. To enable de-
bug output again, call Serial.setDebugOutput (true). To redirect debug output to Seriall instead, call
Seriall.setDebugOutput (true).

You also need to use Serial.setDebugOutput (true) to enable output from printf () function.

The method Serial.setRxBufferSize (size_t size) allows to define the receiving buffer depth. The
default value is 256.

Both Serial and Seriall objects support 5, 6, 7, 8 data bits, odd (O), even (E), and no (N) parity, and
1 or 2 stop bits. To set the desired mode, call Serial .begin (baudrate, SERIAL_8N1), Serial.
begin (baudrate, SERIAL_6E2), etc.

A new method has been implemented on both Serial and Seriall to get current baud rate setting. To get the
current baud rate, call Serial.baudRate (), Seriall.baudRate (). Return a int of current speed. For
example

// Set Baud rate to 57600
Serial.begin(57600);

// Get current baud rate
int br = Serial.baudRate();

// Will print "Serial is 57600 bps"
Serial.printf ("Serial is %d bps", br);

Serial and Seriall objects are both instances of the HardwareSerial class.
I’ve done this also for official ESP8266 Software Serial library, see this pull request.
Note that this implementation is only for ESP8266 based boards, and will not works with other Arduino boards.

To detect an unknown baudrate of data coming into Serial use Serial.detectBaudrate (time_t
timeoutMillis). This method tries to detect the baudrate for a maximum of timeoutMillis ms. It returns zero

2.5. Serial 7

https://github.com/plerup/espsoftwareserial/pull/22

ESP8266 Arduino Core Documentation, Release 2.5.2

if no baudrate was detected, or the detected baudrate otherwise. The detectBaudrate () function may be called
before Serial.begin () is called, because it does not need the receive buffer nor the SerialConfig parameters.

The uart can not detect other parameters like number of start- or stopbits, number of data bits or parity.

The detection itself does not change the baudrate, after detection it should be set as usual using Serial.
begin (detectedBaudrate).

Detection is very fast, it takes only a few incoming bytes.

SerialDetectBaudrate.ino is a full example of usage.

2.6 Progmem

The Program memory features work much the same way as on a regular Arduino; placing read only data and strings in
read only memory and freeing heap for your application. The important difference is that on the ESP8266 the literal
strings are not pooled. This means that the same literal string defined inside a F (" ") and/or PSTR (" ") will take up
space for each instance in the code. So you will need to manage the duplicate strings yourself.

There is one additional helper macro to make it easier to pass const PROGMEM strings to methods that take a
__FlashStringHelper called FPSTR (). The use of this will help make it easier to pool strings. Not pooling
strings. . .

String responsel;
responsel += F ("http:");

String response2;
response2 += F ("http:");

using FPSTR would become. . .

const char HTTP[] PROGMEM = "http:";

String responsel;
responsel += FPSTR(HTTP);

String response2;
response2 += FPSTR(HTTP);

8 Chapter 2. Reference

CHAPTER 3

Libraries

3.1 WiFi(ESP8266WiFi library)

ESP8266WiFi library has been developed basing on ESP8266 SDK, using naming convention and overall functionality
philosophy of the Arduino WiFi Shield library. Over time the wealth Wi-Fi features ported from ESP8266 SDK to this
library outgrew the APIs of WiFi Shield library and it became apparent that we need to provide separate documentation
on what is new and extra.

ESP8266WiFi library documentation

3.2 Ticker

Library for calling functions repeatedly with a certain period. Two examples included.

It is currently not recommended to do blocking IO operations (network, serial, file) from Ticker callback functions.
Instead, set a flag inside the ticker callback and check for that flag inside the loop function.

Here is library to simplificate Ticker usage and avoid WDT reset: TickerScheduler

3.3 EEPROM

This is a bit different from standard EEPROM class. You need to call EEPROM.begin (size) before you start
reading or writing, size being the number of bytes you want to use. Size can be anywhere between 4 and 4096 bytes.

EEPROM. write does not write to flash immediately, instead you must call EEPROM. commit () whenever you wish
to save changes to flash. EEPROM. end () will also commit, and will release the RAM copy of EEPROM contents.

EEPROM library uses one sector of flash located just after the SPIFFS.

Three examples included.

https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/Ticker/examples
https://github.com/Toshik/TickerScheduler
https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM

ESP8266 Arduino Core Documentation, Release 2.5.2

3.4 12C (Wire library)

Wire library currently supports master mode up to approximately 450KHz. Before using I12C, pins for SDA and SCL
need to be set by calling Wire.begin (int sda, int scl),i.e. Wire.begin (0, 2) on ESP-01, else they
default to pins 4(SDA) and 5(SCL).

3.5 SPI

SPI library supports the entire Arduino SPI API including transactions, including setting phase (CPHA). Setting the
Clock polarity (CPOL) is not supported, yet (SPI_MODE?2 and SPI_MODE3 not working).

The usual SPI pins are:
e MOSI = GPIO13
e MISO=GPIO12
e SCLK =GPIO14

There’s an extended mode where you can swap the normal pins to the SPIO hardware pins. This is enabled by calling
SPI.pins (6, 7, 8, 0) beforethecallto SPI.begin (). The pins would change to:

e MOSI =SDl1
e MISO=SDO0
¢ SCLK =CLK

* HWCS = GPIOO

This mode shares the SPI pins with the controller that reads the program code from flash and is controlled by a
hardware arbiter (the flash has always higher priority). For this mode the CS will be controlled by hardware as you
can’t handle the CS line with a GPIO, you never actually know when the arbiter is going to grant you access to the bus
so you must let it handle CS automatically.

3.6 SoftwareSerial

An ESP8266 port of SoftwareSerial library done by Peter Lerup (@plerup) supports baud rate up to 115200 and multi-
ples SoftwareSerial instances. See https://github.com/plerup/espsoftwareserial if you want to suggest an improvement
or open an issue related to SoftwareSerial.

3.7 ESP-specific APIs

Some ESP-specific APIs related to deep sleep, RTC and flash memories are available in the ESP object.

ESP.deepSleep (microseconds, mode) will put the chip into deep sleep. mode is one of
WAKE_RF_DEFAULT, WAKE_RFCAL, WAKE_NO_RFCAL, WAKE_RF_DISABLED. (GPIO16 needs to be tied to
RST to wake from deepSleep.) The chip can sleep for at most ESP . deepSleepMax () microseconds.

ESP.deepSleepInstant (microseconds, mode) works similarly to ESP.deepSleep but sleeps in-
stantly without waiting for WiFi to shutdown.

ESP.rtcUserMemoryWrite (offset, &data, sizeof (data)) and ESP.
rtcUserMemoryRead (offset, &data, sizeof (data)) allow data to be stored in and retrieved
from the RTC user memory of the chip respectively. of fset is measured in blocks of 4 bytes and can range from

10 Chapter 3. Libraries

https://github.com/plerup/espsoftwareserial

ESP8266 Arduino Core Documentation, Release 2.5.2

0 to 127 blocks (total size of RTC memory is 512 bytes). data should be 4-byte aligned. The stored data can be
retained between deep sleep cycles, but might be lost after power cycling the chip. Data stored in the first 32 blocks
will be lost after performing an OTA update, because they are used by the Core internals.

ESP.restart () restarts the CPU.

ESP.getResetReason () returns a String containing the last reset reason in human readable format.
ESP.getFreeHeap () returns the free heap size.

ESP.getHeapFragmentation () returns the fragmentation metric (0% is clean, more than ~50% is not harmless)
ESP.getMaxFreeBlockSize () returns the maximum allocatable ram block regarding heap fragmentation
ESP.getChipId () returns the ESP8266 chip ID as a 32-bit integer.

ESP.getCoreVersion () returns a String containing the core version.

ESP.getSdkVersion () returns the SDK version as a char.

ESP.getCpuFregMHz () returns the CPU frequency in MHz as an unsigned 8-bit integer.
ESP.getSketchSize () returns the size of the current sketch as an unsigned 32-bit integer.
ESP.getFreeSketchSpace () returns the free sketch space as an unsigned 32-bit integer.
ESP.getSketchMD5 () returns a lowercase String containing the MD5 of the current sketch.
ESP.getFlashChipId () returns the flash chip ID as a 32-bit integer.

ESP.getFlashChipSize () returns the flash chip size, in bytes, as seen by the SDK (may be less than actual
size).

ESP.getFlashChipRealSize () returns the real chip size, in bytes, based on the flash chip ID.
ESP.getFlashChipSpeed (void) returns the flash chip frequency, in Hz.

ESP.getCycleCount () returns the cpu instruction cycle count since start as an unsigned 32-bit. This is useful for
accurate timing of very short actions like bit banging.

ESP.getVcc () may be used to measure supply voltage. ESP needs to reconfigure the ADC at startup in order for
this feature to be available. Add the following line to the top of your sketch to use getVcc:

ADC_MODE (ADC_VCC) ;

TOUT pin has to be disconnected in this mode.

Note that by default ADC is configured to read from TOUT pin using analogRead (A0), and ESP.getVCC () is
not available.

3.8 mDNS and DNS-SD responder (ESP8266mDNS library)

Allows the sketch to respond to multicast DNS queries for domain names like “foo.local”’, and DNS-SD (service
discovery) queries. See attached example for details.

3.9 SSDP responder (ESP8266SSDP)

SSDP is another service discovery protocol, supported on Windows out of the box. See attached example for reference.

3.8. mDNS and DNS-SD responder (ESP8266mDNS library) 11

ESP8266 Arduino Core Documentation, Release 2.5.2

3.10 DNS server (DNSServer library)

Implements a simple DNS server that can be used in both STA and AP modes. The DNS server currently supports
only one domain (for all other domains it will reply with NXDOMALIN or custom status code). With it, clients can
open a web server running on ESP8266 using a domain name, not an IP address.

3.11 Servo

This library exposes the ability to control RC (hobby) servo motors. It will support up to 24 servos on any available
output pin. By default the first 12 servos will use Timer(O and currently this will not interfere with any other support.
Servo counts above 12 will use Timerl and features that use it will be affected. While many RC servo motors will
accept the 3.3V 10 data pin from a ESP8266, most will not be able to run off 3.3v and will require another power
source that matches their specifications. Make sure to connect the grounds between the ESP8266 and the servo motor
power supply.

3.12 Improved EEPROM library for ESP (ESP_EEPROM)

An improved EEPROM library for ESPxxxx. Uses flash memory as per the standard ESP EEPROM library but reduces
reflash - so reducing wear and improving commit() performance.

As actions on the flash need to stop the interrupts, an EEPROM reflash could noticably affect anything using PWM,
etc.

3.13 Other libraries (not included with the IDE)

Libraries that don’t rely on low-level access to AVR registers should work well. Here are a few libraries that were
verified to work:

» Adafruit_ILI9341 - Port of the Adafruit ILI9341 for the ESP8266

e arduinoVNC - VNC Client for Arduino

 arduinoWebSockets - WebSocket Server and Client compatible with ESP8266 (RFC6455)
e aREST - REST API handler library.

* Blynk - easy IoT framework for Makers (check out the Kickstarter page).

* DallasTemperature

e DHT-sensor-library - Arduino library for the DHT11/DHT22 temperature and humidity sensors. Download
latest v1.1.1 library and no changes are necessary. Older versions should initialize DHT as follows: DHT
dht (DHTPIN, DHTTYPE, 15)

e DimSwitch - Control electronic dimmable ballasts for fluorescent light tubes remotely as if using a wall switch.
* Encoder - Arduino library for rotary encoders. Version 1.4 supports ESP8266.

* esp8266_mdns - mDNS queries and responses on esp8266. Or to describe it another way: An mDNS Client or
Bonjour Client library for the esp8266.

e ESP-NOW - Wrapper lib for ESP-NOW (See #2227)
e ESPAsyncTCP - Asynchronous TCP Library for ESP8266 and ESP32/31B

12 Chapter 3. Libraries

https://github.com/Links2004/Adafruit_ILI9341
https://github.com/Links2004/arduinoVNC
https://github.com/Links2004/arduinoWebSockets
https://github.com/marcoschwartz/aREST
https://github.com/blynkkk/blynk-library
https://tiny.cc/blynk-kick
https://github.com/milesburton/Arduino-Temperature-Control-Library.git
https://github.com/adafruit/DHT-sensor-library
https://github.com/krzychb/DimSwitch
https://github.com/PaulStoffregen/Encoder
https://github.com/mrdunk/esp8266_mdns
https://github.com/yoursunny/WifiEspNow
https://github.com/esp8266/Arduino/issues/2227
https://github.com/me-no-dev/ESPAsyncTCP

ESP8266 Arduino Core Documentation, Release 2.5.2

» ESPAsyncWebServer - Asynchronous Web Server Library for ESP8266 and ESP32/31B
* Homie for ESP8266 - Arduino framework for ESP8266 implementing Homie, an MQTT convention for the IoT.

* NeoPixel - Adafruit’s NeoPixel library, now with support for the ESP8266 (use version 1.0.2 or higher from
Arduino’s library manager).

* NeoPixelBus - Arduino NeoPixel library compatible with ESP8266. Use the “DmaDriven” or “UartDriven”
branches for ESP8266. Includes HSL color support and more.

* PubSubClient - MQTT library by @Imroy.
¢ RTC - Arduino Library for Ds1307 & Ds3231 compatible with ESP8266.
* Souliss, Smart Home - Framework for Smart Home based on Arduino, Android and openHAB.

e ST7735 - Adafruit’s ST7735 library modified to be compatible with ESP8266. Just make sure to modify the
pins in the examples as they are still AVR specific.

* Task - Arduino Nonpreemptive multitasking library. While similiar to the included Ticker library in the func-
tionality provided, this library was meant for cross Arduino compatibility.

* TickerScheduler - Library provides simple scheduler for Ticker to avoid WDT reset

 Teleinfo - Generic French Power Meter library to read Teleinfo energy monitoring data such as consuption,
contract, power, period, ... This library is cross platform, ESP8266, Arduino, Particle, and simple C++. French
dedicated post on author’s blog and all related information about Teleinfo also available.

e UTFT-ESP8266 - UTFT display library with support for ESP8266. Only serial interface (SPI) displays are
supported for now (no 8-bit parallel mode, etc). Also includes support for the hardware SPI controller of the
ESP8266.

» WiFiManager - WiFi Connection manager with web captive portal. If it can’t connect, it starts AP mode and a
configuration portal so you can choose and enter WiFi credentials.

* OneWire - Library for Dallas/Maxim 1-Wire Chips.

* Adafruit-PCD8544-Nokia-5110-LCD-Library - Port of the Adafruit PCD8544 - library for the ESP8266.

* PCF8574_ESP - A very simplistic library for using the PCF857//PCF8574A 12C 8-pin GPIO-expander.

* Dot Matrix Display Library 2 - Freetronics DMD & Generic 16 x 32 P10 style Dot Matrix Display Library

» SdFat-beta - SD-card library with support for long filenames, software- and hardware-based SPI and lots more.

e FastLED - a library for easily & efficiently controlling a wide variety of LED chipsets, like the Neopixel
(WS2812B), DotStar, LPD8806 and many more. Includes fading, gradient, color conversion functions.

e OLED - alibrary for controlling I2C connected OLED displays. Tested with 0.96 inch OLED graphics display.
* MFRC522 - A library for using the Mifare RC522 RFID-tag reader/writer.
* Ping - lets the ESP8266 ping a remote machine.

* AsyncPing - fully asynchronous Ping library (have full ping statistic and hardware MAC address).

3.13. Other libraries (not included with the IDE) 13

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/marvinroger/homie-esp8266
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/Makuna/NeoPixelBus
https://github.com/Imroy/pubsubclient
https://github.com/Makuna/Rtc
https://github.com/souliss/souliss
https://github.com/nzmichaelh/Adafruit-ST7735-Library
https://github.com/Makuna/Task
https://github.com/Toshik/TickerScheduler
https://github.com/hallard/LibTeleinfo
https://hallard.me/libteleinfo/
https://hallard.me/category/tinfo/
https://github.com/gnulabis/UTFT-ESP8266
https://github.com/tzapu/WiFiManager
https://github.com/PaulStoffregen/OneWire
https://github.com/WereCatf/Adafruit-PCD8544-Nokia-5110-LCD-library
https://github.com/WereCatf/PCF8574_ESP
https://github.com/freetronics/DMD2
https://github.com/greiman/SdFat-beta
https://github.com/FastLED/FastLED
https://github.com/klarsys/esp8266-OLED
https://github.com/miguelbalboa/rfid
https://github.com/dancol90/ESP8266Ping
https://github.com/akaJes/AsyncPing

ESP8266 Arduino Core Documentation, Release 2.5.2

14 Chapter 3. Libraries

CHAPTER 4

Filesystem

4.1 Flash layout

Even though file system is stored on the same flash chip as the program, programming new sketch will not modify file
system contents. This allows to use file system to store sketch data, configuration files, or content for Web server.

The following diagram illustrates flash layout used in Arduino environment:

Sketch OTA update File system EEPROM WiFi config (SDK)

File system size depends on the flash chip size. Depending on the board which is selected in IDE, you have the
following options for flash size:

Board Flash chip size, bytes | File system size, bytes
Generic module 512k 64k, 128k

Generic module 1M 64k, 128k, 256k, 512k
Generic module 2M 1M

Generic module 4M 1M, 2M, 3M

Adafruit HUZZAH 4M 1M, 2M, 3M
ESPresso Lite 1.0 4M 1M, 2M, 3M
ESPresso Lite 2.0 M 1M, 2M, 3M
NodeMCU 0.9 M 1M, 2M, 3M
NodeMCU 1.0 4M 1M, 2M, 3M

Olimex MOD-WIFI-ESP8266(-DEV) | 2M M

SparkFun Thing 512k 64k

SweetPea ESP-210 aM 1M, 2M, 3M

WeMos D1 R1, R2 & mini I4M 1M, 2M, 3M
ESPDuino 4M 1M, 2M, 3M
WiFiduino 4M 1M, 2M, 3M

15

ESP8266 Arduino Core Documentation, Release 2.5.2

Note: to use any of file system functions in the sketch, add the following include to the sketch:

’ #include "FS.h"

4.2 File system limitations

The filesystem implementation for ESP8266 had to accomodate the constraints of the chip, among which its limited
RAM. SPIFFS was selected because it is designed for small systems, but that comes at the cost of some simplifications
and limitations.

First, behind the scenes, SPIFFS does not support directories, it just stores a “flat” list of files. But contrary to
traditional filesystems, the slash character ' /' is allowed in filenames, so the functions that deal with directory listing
(e.g. openDir ("/website")) basically just filter the filenames and keep the ones that start with the requested
prefix (/website/). Practically speaking, that makes little difference though.

Second, there is a limit of 32 chars in total for filenames. One '\ 0" char is reserved for C string termination, so that
leaves us with 31 usable characters.

Combined, that means it is advised to keep filenames short and not use deeply nested directories, as the full path of
each file (including directories, ' /' characters, base name, dot and extension) has to be 31 chars at a maximum. For
example, the filename /website/images/bird_thumbnail. jpg is 34 chars and will cause some problems if
used, for example in exists () or in case another file starts with the same first 31 characters.

Warning: That limit is easily reached and if ignored, problems might go unnoticed because no error message will
appear at compilation nor runtime.

For more details on the internals of SPIFFS implementation, see the SPIFFS readme file.

4.3 Uploading files to file system

ESP8266FS is a tool which integrates into the Arduino IDE. It adds a menu item to Tools menu for uploading the
contents of sketch data directory into ESP8266 flash file system.

Warning: Due to the move from the obsolete esptool-ck.exe to the supported esptool.py upload tool, upgraders from
pre 2.5.1 will need to update the ESP8266FS tool referenced below to 0.4.0 or later. Prior versions will fail with a
“esptool not found” error because they don’t know how to use esptool.py.

* Download the tool: https://github.com/esp8266/arduino-esp8266fs-plugin/releases/download/0.4.0/
ESP8266FS-0.4.0.zip

¢ In your Arduino sketchbook directory, create t ools directory if it doesn’t exist yet

e Unpack the tool into tools directory (the path will look like <home_dir>/Arduino/tools/
ESP8266FS/tool/esp8266fs. jar) If upgrading, overwrite the existing JAR file with the newer version.

* Restart Arduino IDE

* Open a sketch (or create a new one and save it)

* Go to sketch directory (choose Sketch > Show Sketch Folder)

* Create a directory named data and any files you want in the file system there
* Make sure you have selected a board, port, and closed Serial Monitor

* Select Tools > ESP8266 Sketch Data Upload. This should start uploading the files into ESP8266 flash file
system. When done, IDE status bar will display SPIFFS Image Uploaded message.

16 Chapter 4. Filesystem

https://github.com/pellepl/spiffs
https://github.com/esp8266/Arduino/blob/master/cores/esp8266/spiffs/README.md
https://github.com/esp8266/arduino-esp8266fs-plugin/releases/download/0.4.0/ESP8266FS-0.4.0.zip
https://github.com/esp8266/arduino-esp8266fs-plugin/releases/download/0.4.0/ESP8266FS-0.4.0.zip

ESP8266 Arduino Core Documentation, Release 2.5.2

4.4 File system object (SPIFFS)

4.4.1 setConfig

SPIFFSConfig cfg;
cfg.setAutoFormat (false);
SPIFFS.setConfig(cfqg);

This method allows you to configure the parameters of a filesystem before mounting. All filesystems have their own
*Config (i.e. SDFSConfig or SPIFFSConfig with their custom set of options. All filesystems allow explic-
itly enabling/disabling formatting when mounts fail. If you do not call this setConfig method before perforing
begin (), you will get the filesystem’s default behavior and configuration. By default, SPIFFS will autoformat the
filesystem if it cannot mount it, while SDFS will not.

4.4.2 begin

SPIFFS.begin ()

This method mounts SPIFFES file system. It must be called before any other FS APIs are used. Returns true if file
system was mounted successfully, false otherwise. With no options it will format SPIFFS if it is unable to mount it on
the first try.

4.4.3 end

SPIFFS.end()

This method unmounts SPIFFS file system. Use this method before updating SPIFES using OTA.

4.4.4 format

SPIFFS.format ()

Formats the file system. May be called either before or after calling begin. Returns frue if formatting was successful.

4.4.5 open

SPIFFS.open (path, mode)

Opens a file. path should be an absolute path starting with a slash (e.g. /dir/filename.txt). mode is a string
specifying access mode. It can be one of “r”, “w”, “a”, “r+”, “w+”, “a+”. Meaning of these modes is the same as for

fopen C function.

r Open text file for reading. The stream is positioned at the
beginning of the file.

r+ Open for reading and writing. The stream is positioned at the
beginning of the file.

w Truncate file to zero length or create text file for writing.

(continues on next page)

4.4. File system object (SPIFFS) 17

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

The stream is positioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does
not exist, otherwise it is truncated. The stream is
positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is
created if it does not exist. The stream is positioned at the
end of the file.

a+ Open for reading and appending (writing at end of file). The
file is created if it does not exist. The initial file
position for reading is at the beginning of the file, but
output is always appended to the end of the file.

Returns File object. To check whether the file was opened successfully, use the boolean operator.

File f = SPIFFS.open("/f.txt", "w");
if (!'f) |
Serial.println("file open failed");

4.4.6 exists

SPIFFS.exists (path)

Returns frue if a file with given path exists, false otherwise.

4.4.7 openDir

SPIFFS.openDir (path)

Opens a directory given its absolute path. Returns a Dir object.

4.4.8 remove

SPIFFS.remove (path)

Deletes the file given its absolute path. Returns true if file was deleted successfully.

4.4.9 rename

SPIFFS.rename (pathFrom, pathTo)

Renames file from pathFrom to pathTo. Paths must be absolute. Returns true if file was renamed successfully.

18 Chapter 4. Filesystem

ESP8266 Arduino Core Documentation, Release 2.5.2

4.4.10 info

FSInfo fs_info;
SPIFFS.info (fs_info);

Fills FSInfo structure with information about the file system. Returns t rue is successful, false otherwise.

4.5 Filesystem information structure

struct FSInfo {
size_t totalBytes;
size_t usedBytes;
size_t blockSize;
size_t pageSize;
size_t maxOpenFiles;
size_t maxPathLength;

}i

This is the structure which may be filled using FS::info method. - totalBytes — total size of useful data on the file
system - usedBytes — number of bytes used by files - blockSize — SPIFFS block size - pageSize — SPIFFS
logical page size - maxOpenFiles — max number of files which may be open simultaneously - maxPathLength
— max file name length (including one byte for zero termination)

4.6 Directory object (Dir)

The purpose of Dir object is to iterate over files inside a directory. It provides the methods: next (), fileName (),
fileSize () ,and openFile (mode).

The following example shows how it should be used:

Dir dir = SPIFFS.openDir ("/data");

while (dir.next ()) {
Serial.print (dir.fileName());
if(dir.fileSize()) {
File f = dir.openFile("r");

Serial.println(f.size());

4.6.1 next

Returns true while there are files in the directory to iterate over. It must be called before calling £ileName (),
fileSize (), and openFile () functions.

4.6.2 fileName

Returns the name of the current file pointed to by the internal iterator.

4.5. Filesystem information structure 19

ESP8266 Arduino Core Documentation, Release 2.5.2

4.6.3 fileSize

Returns the size of the current file pointed to by the internal iterator.

4.6.4 openfFile

This method takes mode argument which has the same meaning as for SPIFFS. open () function.

4.7 File object

SPIFFS.open () and dir.openFile () functions return a File object. This object supports all the functions of
Stream, so you can use readBytes, findUntil, parselInt, println, and all other Stream methods.

There are also some functions which are specific to File object.

4.7.1 seek

file.seek (offset, mode)

This function behaves like £seek C function. Depending on the value of mode, it moves current position in a file as

follows:

* if mode is SeekSet, position is set to of £ set bytes from the beginning.
* if mode is SeekCur, current position is moved by of fset bytes.

* if mode is SeekEnd, position is set to of £set bytes from the end of the file.

Returns frue if position was set successfully.

4.7.2 position

file.position()

Returns the current position inside the file, in bytes.

4.7.3 size

file.size ()

Returns file size, in bytes.

4.7.4 name

String name = file.name();

Returns file name, as const char«. Convert it to String for storage.

20

Chapter 4. Filesystem

ESP8266 Arduino Core Documentation, Release 2.5.2

4.7.5 close

file.close ()

Close the file. No other operations should be performed on File object after c1ose function was called.

4.7. File object 21

ESP8266 Arduino Core Documentation, Release 2.5.2

22

Chapter 4. Filesystem

CHAPTER B

ESP8266WiF:i library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to Wi-Fi network to start sending
and receiving data, this is a good place to start. If you are looking for more in depth details of how to program specific
Wi-Fi networking functionality, you are also in the right place.

5.1 Introduction

The Wi-Fi library for ESP8266 has been developed based on ESP8266 SDK, using naming convention and overall
functionality philosophy of Arduino WiFi library. Over time the wealth Wi-Fi features ported from ESP9266 SDK to
esp8266 / Arduino outgrew Arduino WiFi library and it became apparent that we need to provide separate documen-
tation on what is new and extra.

This documentation will walk you through several classes, methods and properties of ESP8266WiFi library. If you are
new to C++ and Arduino, don’t worry. We will start from general concepts and then move to detailed description of
members of each particular class including usage examples.

The scope of functionality offered by ESP8266WiFi library is quite extensive and therefore this description has been
broken up into separate documents marked with :arrow_right:.

5.1.1 Quick Start

Hopefully you are already familiar how to load Blink.ino sketch to ESP8266 module and get the LED blinking. If not,
please check this tutorial by Adafruit or another great tutorial developed by Sparkfun.

To hook up ESP module to Wi-Fi (like hooking up a mobile phone to a hot spot), you need just couple of lines of code:

#include <ESP8266WiFi.h>

void setup ()

{
Serial.begin(115200);
Serial.println();

(continues on next page)

23

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino
https://www.arduino.cc/en/Reference/WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/esp8266/Arduino/blob/master/libraries/esp8266/examples/Blink/Blink.ino
https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide
https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide/introduction

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

WiFi.begin ("network-name", "pass-to-network");

Serial.print ("Connecting");
while (WiFi.status() != WL_CONNECTED)
{
delay (500);
Serial.print (".");
}

Serial.println();

Serial.print ("Connected, IP address: ");
Serial.println(WiFi.locallIP());

void loop () {}

In the line WiFi.begin ("network-name",

"pass-to-network") replace network-name and

pass-to-network with name and password to the Wi-Fi network you like to connect. Then upload this sketch to

ESP module and open serial monitor. You should see something like:

[

s COM3

=N o =

a7 a1l =T ot vl 4T

4 T

....... rl lef| E1&| € 1i k|Z, i 'FbE bESnnilnneii b -

Connected, IP address: 152.162.1.10

m

k

[¥] Autoscroll :No line ending v: :1152(!0 baud -

How does it work? In the first line of sketch #include <ESP8266WiFi.h> we are including ESP8266WiFi
library. This library provides ESP8266 specific Wi-Fi routines we are calling to connect to network.

Actual connection to Wi-Fi is initialized by calling:

WiFi.begin ("network-name", "pass—-to-network");

Connection process can take couple of seconds and we are checking for this to complete in the following loop:

while (WiFi.status() != WL_CONNECTED)
{

(continues on next page)

24

Chapter 5. ESP8266WiFi library

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

delay (500);
Serial.print (".");

}

The while () loop will keep looping while WiFi.status () is other than WL_CONNECTED. The loop will exit
only if the status changes to WL_CONNECTED.

The last line will then print out IP address assigned to ESP module by DHCP:

Serial.println(WiFi.localIP());

If you don’t see the last line but just more and more dots , then likely name or password to the Wi-Fi
network in sketch is entered incorrectly. Verify name and password by connecting from scratch to this Wi-Fi a PC or
a mobile phone.

Note: if connection is established, and then lost for some reason, ESP will automatically reconnect to last used access
point once it is again back on-line. This will be done automatically by Wi-Fi library, without any user intervention.

That’s all you need to connect ESP8266 to Wi-Fi. In the following chapters we will explain what cool things can be
done by ESP once connected.

5.1.2 Who is Who

Devices that connect to Wi-Fi network are called stations (STA). Connection to Wi-Fi is provided by an access point
(AP), that acts as a hub for one or more stations. The access point on the other end is connected to a wired network. An
access point is usually integrated with a router to provide access from Wi-Fi network to the internet. Each access point
is recognized by a SSID (Service Set IDentifier), that essentially is the name of network you select when connecting
a device (station) to the Wi-Fi.

ESP8266 module can operate as a station, so we can connect it to the Wi-Fi network. It can also operate as a soft
access point (soft-AP), to establish its own Wi-Fi network. Therefore we can connect other stations to such ESP
module. ESP8266 is also able to operate both in station and soft access point mode. This provides possibility of
building e.g. mesh networks.

The ESP8266WiFi library provides wide collection of C++ methods (functions) and properties to configure and operate
an ESP8266 module in station and / or soft access point mode. They are described in the following chapters.

5.2 Class Description

The ESP8266WiFi library is broken up into several classes. In most of cases, when writing the code, user is not
concerned with this classification. We are using it to break up description of this library into more manageable pieces.

Chapters below describe all function calls (methods and properties in C++ terms) listed in particular classes of
ESP8266WiFi. Description is illustrated with application examples and code snippets to show how to use functions in
practice. Most of this information is broken up into separate documents. Please follow to access them.

5.2.1 Station

Station (STA) mode is used to get ESP module connected to a Wi-Fi network established by an access point.

Station class has several features to facilitate management of Wi-Fi connection. In case the connection is lost, ESP8266
will automatically reconnect to the last used access point, once it is again available. The same happens on module
reboot. This is possible since ESP is saving credentials to last used access point in flash (non-volatile) memory.

5.2. Class Description 25

https://whatismyipaddress.com/dhcp
https://en.wikipedia.org/wiki/Mesh_networking
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Property_(programming)
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Property_(programming)
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi

ESP8266 Arduino Core Documentation, Release 2.5.2

Station (PC)

Station + Soft
Access Point
(ESPB266) Access Point

ESP8266 operating in the Station + Soft Access Point Mode mode

WiFiClient

a a WiFiClientSecure
BufferDataSource ESP8266WiFiAPClass SList WiFiEventHandlerOpaque
BufferedStreamDataSource ESP8266WiFiClass 55LContext WiFiEventModeChange
ESP3266WiFiGenericClass WiFiEventSoftAPModeProbeRequest
c ESP8266WiFiMulti WiFiEventSoftAPMode StationConnec
ClientContext ESP3266WiFiScanClass UdpContext WiFiEventSoftAPMode StationDisconi
ESP8266WiFiSTAClass WiFiEventStationModeAuthModeCha

n n WiFiEventStationModeConnected

DataSource ﬂ WifiAPlist _t

Progmem Stream

26 Chapter 5. ESP8266WiFi library

ESP8266 Arduino Core Documentation, Release 2.5.2

Internet

Station

(ESPR266) Access Point

Station (PC)

ESP8266 operating in the Station mode

Using the saved data ESP will also reconnect if sketch has been changed but code does not alter the Wi-Fi mode or
credentials.

Station Class documentation

Check out separate section with examples.

5.2.2 Soft Access Point

An access point (AP) is a device that provides access to Wi-Fi network to other devices (stations) and connects them
further to a wired network. ESP8266 can provide similar functionality except it does not have interface to a wired
network. Such mode of operation is called soft access point (soft-AP). The maximum number of stations that can
simultaneously be connected to the soft-AP can be set from 0 to 8, but defaults to 4.

The soft-AP mode is often used and an intermediate step before connecting ESP to a Wi-Fi in a station mode. This is
when SSID and password to such network is not known upfront. ESP first boots in soft-AP mode, so we can connect
to it using a laptop or a mobile phone. Then we are able to provide credentials to the target network. Once done ESP
is switched to the station mode and can connect to the target Wi-Fi.

Another handy application of soft-AP mode is to set up mesh networks. ESP can operate in both soft-AP and Station
mode so it can act as a node of a mesh network.

Soft Access Point Class documentation

Check out separate section with examples.

5.2. Class Description 27

https://en.wikipedia.org/wiki/Wireless_access_point
https://bbs.espressif.com/viewtopic.php?f=46&t=481&p=1832&hilit=max_connection#p1832
https://en.wikipedia.org/wiki/Mesh_networking

ESP8266 Arduino Core Documentation, Release 2.5.2

Station (PC)

Station

(mobile phone) Soft Access Point

(ESP8266)

ESP8266 operating in the Soft Access Point mode

5.2.3 Scan

To connect a mobile phone to a hot spot, you typically open Wi-Fi settings app, list available networks and pick the
hot spot you need. Then enter a password (or not) and you are in. You can do the same with ESP. Functionality of
scanning for, and listing of available networks in range is implemented by the Scan Class.

Scan Class documentation

Check out separate section with examples.

5.2.4 Client

The Client class creates clients that can access services provided by servers in order to send, receive and process data.

Check out separate section with examples / list of functions

5.2.5 axTLS Client Secure - DEPRECATED

The following section details axTLS, the older TLS library used by the project. It is still supported, but additional fixes
and documentation will generally not be undertaken. See the following section for the updated TLS client object.

The axTLS Client Secure is an extension of Client Class where connection and data exchange with servers is done
using a secure protocol. It supports TLS 1.1. The TLS 1.2 is not supported.

Secure applications have additional memory (and processing) overhead due to the need to run cryptography algorithms.
The stronger the certificate’s key, the more overhead is needed. In practice it is not possible to run more than a single
secure client at a time. The problem concerns RAM memory we can not add, the flash memory size is usually not the
issue. If you like to learn how client secure library has been developed, access to what servers have been tested, and
how memory limitations have been overcame, read fascinating issue report #43.

28 Chapter 5. ESP8266WiFi library

https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.1
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClientSecure.h
https://github.com/esp8266/Arduino/issues/43

ESP8266 Arduino Core Documentation, Release 2.5.2

Internet

Access Point

Client
(ESP8266) Server (PC)

ESP8266 operating as the Client

5.2. Class Description 29

ESP8266 Arduino Core Documentation, Release 2.5.2

Check out separate section with examples / list of functions

5.2.6 BearSSL Client Secure and Server Secure

BearSSL::WiFiClientSecure and BearSSL::WiFiServerSecure are extensions of the standard Client and Server classes
where connection and data exchange with servers and clients using secure protocol. It supports TLS 1.2 using a wide
variety of modern ciphers, hashes, and key types.

Internet

Access Point

Client Secure
(ESP8266) Server (PC)

ESP8266 operating as the Client Secure

Secure clients and servers require siginificant amounts of additional memory and processing to enable their crypto-
graphic algorithms. In general only a single secure client or server connection at a time can be processed given the
little RAM present on the ESP8266, but there are methods of reducing this RAM requirement detailed in the relevant
sections.

BearSSL::WiFiClientSecure contains more information on using and configuring TLS connections.

BearSSL::WiFiServerSecure discusses the TLS server mode available. Please read and understand the
BearSSL::WiFiClientSecure first as the server uses most of the same concepts.

5.2.7 Server

The Server Class creates servers that provide functionality to other programs or devices, called clients.
Clients connect to sever to send and receive data and access provided functionality.

Check out separate section with examples / list of functions.

30 Chapter 5. ESP8266WiFi library

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security#TLS_1.2
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Client_(computing)

ESP8266 Arduino Core Documentation, Release 2.5.2

Internat

Client {

Access Point
Server

(ESP8266)

Client
[mobile phone)

ESP8266 operating as the Server

5.2. Class Description 31

ESP8266 Arduino Core Documentation, Release 2.5.2

5.2.8 UDP

The UDP Class enables the User Datagram Protocol (UDP) messages to be sent and received. The UDP uses a simple
“fire and forget” transmission model with no guarantee of delivery, ordering, or duplicate protection. UDP provides
checksums for data integrity, and port numbers for addressing different functions at the source and destination of the
datagram.

Check out separate section with examples / list of functions.

5.2.9 Generic

There are several functions offered by ESP8266’s SDK and not present in Arduino WiFi library. If such function
does not fit into one of classes discussed above, it will likely be in Generic Class. Among them is handler to manage
Wi-Fi events like connection, disconnection or obtaining an IP, Wi-Fi mode changes, functions to manage module
sleep mode, hostname to an IP address resolution, etc.

Check out separate section with examples / list of functions.

5.3 Diagnostics

There are several techniques available to diagnose and troubleshoot issues with getting connected to Wi-Fi and keeping
connection alive.

5.3.1 Check Return Codes

Almost each function described in chapters above returns some diagnostic information.

Such diagnostic may be provided as a simple boolean type true or false to indicate operation result. You may
check this result as described in examples, for instance:

Serial.printf ("Wi-Fi mode set to WIFI_STA %s\n", WiFi.mode (WIFI_STA) 2 "" : "Failed!

=");

Some functions provide more than just a binary status information. A good example is WiFi.status ().

Serial.printf ("Connection status: %d\n", WiFi.status());

This function returns following codes to describe what is going on with Wi-Fi connection:
* 0: WL_IDLE_STATUS when Wi-Fi is in process of changing between statuses
e 1:WL_NO_SSID_AVAILin case configured SSID cannot be reached
e 3: WL_CONNECTED after successful connection is established
* 4: WL_CONNECT_FAILED if password is incorrect
°* 6:

WL_DISCONNECTED if module is not configured in station mode

It is a good practice to display and check information returned by functions. Application development and trou-
bleshooting will be easier with that.

32 Chapter 5. ESP8266WiFi library

https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://bbs.espressif.com/viewtopic.php?f=51&t=1023
https://www.arduino.cc/en/Reference/WiFi

ESP8266 Arduino Core Documentation, Release 2.5.2

5.3.2 Use printDiag

There is a specific function available to print out key Wi-Fi diagnostic information:

WiFi.printDiag (Serial);

A sample output of this function looks as follows:

Mode: STA+AP

PHY mode: N

Channel: 11

AP id: O

Status: 5

Auto connect: 1

SSID (10): sensor—net
Passphrase (12): 123!$#0&xesP
BSSID set: O

Use this function to provide snapshot of Wi-Fi status in these parts of application code, that you suspect may be failing.

5.3.3 Enable Wi-Fi Diagnostic

By default the diagnostic output from Wi-Fi libraries is disabled when you call Serial.begin. To enable de-
bug output again, call Serial.setDebugOutput (true). To redirect debug output to Seriall instead, call
Seriall.setDebugOutput (true). For additional details regarding diagnostics using serial ports please refer
to the documentation.

Below is an example of output for sample sketch discussed in Quick Start above with Serial.
setDebugOutput (true):

Connectingscandone
state: 0 -> 2 (b0)
state: 2 -> 3 (0)
state: 3 -> 5 (10)
add 0

aid 1

cnt

connected with sensor-net, channel 6

dhcp client start...

chg_B1:-40
..1p:192.168.1.10,mask:255.255.255.0,gw:192.168.1.9

Connected, IP address: 192.168.1.10

The same sketch without Serial.setDebugOutput (true) will print out only the following:

Connecting. ...
Connected, IP address: 192.168.1.10

5.3.4 Enable Debugging in IDE

Arduino IDE provides convenient method to enable debugging for specific libraries.

5.3. Diagnostics 33

ESP8266 Arduino Core Documentation, Release 2.5.2

5.4 What’s Inside?

If you like to analyze in detail what is inside of the ESP8266WiFi library, go directly to the ESP8266WiFi folder of
esp8266 / Arduino repository on the GitHub.

To make the analysis easier, rather than looking into individual header or source files, use one of free tools to automat-
ically generate documentation. The class index in chapter Class Description above has been prepared in no time using
great Doxygen, that is the de facto standard tool for generating documentation from annotated C++ sources.

Q' =) a Ch\Users\Krzysztof\Docurnents\ Projects\ espB82666- doch esp8266wifitDoxyGen'icl D~ -‘:@ ESPE266WIFi: ESPR2GE

ESP8266WiFi

a ESP8266WiFi Library Documentation

Main Page | Modules Classes Files |

Class List | Class Index | Class Hierarchy Class Members |

¥ ESPE266WIFi

axTLS AP ~ ESP8266WiFiClass Class Reference

¢ Modules
T Classes #include <ESPB266WiFi.h>
¥ Class List
b BufferDataSource Inheritance diagram for ESPE266WIFIClass:
BufferedStreamDataSource EaPozbawWiF GenericClass EaPosbaWiFISTALCIass [
b ClientContext T T B

¢ DataSource
iF
b ESP22EEWIFiAPClass ESP32BEW

ESPB26EWIFIClass

¢ ESPE266WIFiIGenericClass PUbIIC Member Funcnﬂnﬁ

b ESPE2GEWIFiMulti void printDiag (Print &dest)
b ESP8266WiFiScanClass

b ESPE2EEWIFISTAClass
» ProgmemStraam ¥ Public Member Functions inherited from ESP8266WiFiSTAClass

¥ Public Member Functions inherited from ESP3266WiFiGenericClass

b Slist ¢ Public Member Functions inherited from ESP8266WiFiScanClass

¢ S5LContext

" ¥ Public Member Functions inherited from ESP8266WiFiAPClass
¢ UdpContext

{ : } M et = el

ESP326EWIFIiClass |

/

The tool crawls through all header and source files collecting information from formatted comment blocks. If devel-
oper of particular class annotated the code, you will see it like in examples below.

34 Chapter 5. ESP8266WiFi library

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi/src
https://www.doxygen.nl/

ESP8266 Arduino Core Documentation, Release 2.5.2

wl_status_t ESP8266WiFiSTAClass::begin (const char® ssid,
constchar® passphrase = NULL,
int32 _t channel = 0,
const uintd_t* bssid = HULL,

bool connect = troe

Start Wifi connection if passphrase is set the most secure supported mode will be automatically selected

Parameters

ssid const char® Pointer to the S5ID string.

passphrase const char * Optional. Passphrase. Valid characters in a passphrase must be between ASCII 32-12¢
bssid uintd_t[6] Optional. BSSID / MAC of AP
channel Optional. Channel of AP

connect COptional. call connect

Returns

Definition at line 97 of file ESPS266WiFiSTA.cpp.

bool ESP8266WIiFiSTAClass::hostname | char * aHostname)

Set ESPA26E station DHCP hostname

Parameters

aHostname max length:32

Returns
ok

Definition at line 422 of file ESP8266WIiFiSTA.cpp.

5.4. What’s Inside? 35

ESP8266 Arduino Core Documentation, Release 2.5.2

If code is not annotated, you will still see the function prototype including types of arguments, and can use provided
links to jump straight to the source code to check it out on your own. Doxygen provides really excellent navigation

between members of library.
uintd_t WiFiUDP::begin { uint16_t port)

Definition at line 77 of file WiFiUdp.cpp.

Several classes of ESP8266WiFi are not annotated. When preparing this document, Doxygen has been tremendous
help to quickly navigate through almost 30 files that make this library.

36 Chapter 5. ESP8266WiFi library

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://www.doxygen.nl/

CHAPTER O

OTA Updates

6.1 Introduction

OTA (Over the Air) update is the process of loading the firmware to ESP module using Wi-Fi connection rather than
a serial port. Such functionality became extremely useful in case of limited or no physical access to the module.

OTA may be done using:
* Arduino IDE
» Web Browser
* HTTP Server

Arduino IDE option is intended primarily for software development phase. The two other options would be more
useful after deployment, to provide module with application updates manually with a web browser, or automatically
using a http server.

In any case, the first firmware upload has to be done over a serial port. If the OTA routines are correctly implemented
in a sketch, then all subsequent uploads may be done over the air.

By default there is no imposed security on OTA process. It is up to developer to ensure that updates are allowed only
from legitimate / trusted sources. Once the update is complete, the module restarts, and the new code is executed.
The developer should ensure that the application running on the module is shut down and restarted in a safe manner.
Chapters below provide additional information regarding security and safety of OTA process.

6.1.1 Security Disclaimer

No guarantees as to the level of security provided for your application by the following methods is implied. Please
refer to the GNU LGPL license associated for this project for full disclaimers. If you do find security weaknesses,
please don’t hesitate to contact the maintainers or supply pull requests with fixes. The MDS5 verification and password
protection schemes are already known as supplying a very weak level of security.

37

ESP8266 Arduino Core Documentation, Release 2.5.2

6.1.2 Basic Security

The module has to be exposed wirelessly to get it updated with a new sketch. That poses chances of module being
violently hacked and loaded with some other code. To reduce likelihood of being hacked consider protecting your
uploads with a password, selecting certain OTA port, etc.

Check functionality provided with ArduinoOTA library that may improve security:

void setPort (uintl6_t port);
void setHostname (const charx hostname);
void setPassword(const charx password);

Certain protection functionality is already built in and do not require any additional coding by developer. ArduinoOTA
and espota.py use Digest-MDS5 to authenticate upload. Integrity of transferred data is verified on ESP side using MD5
checksum.

Make your own risk analysis and depending on application decide what library functions to implement. If required,
consider implementation of other means of protection from being hacked, e.g. exposing module for uploads only
according to specific schedule, trigger OTA only be user pressing dedicated “Update” button wired to ESP, etc.

6.1.3 Advanced Security - Signed Updates

While the above password-based security will dissuade casual hacking attempts, it is not highly secure. For appli-
cations where a higher level of security is needed, cryptographically signed OTA updates can be required. It uses
SHA256 hashing in place of MDS5 (which is known to be cryptographically broken) and RSA-2048 bit level en-
cryption to guarantee only the holder of a cryptographic private key can generate code accepted by the OTA update
mechanisms.

These are updates whose compiled binary are signed with a private key (held by the developer) and verified with a
public key (stored in the application and available for all to see). The signing process computes a hash of the binary
code, encrypts the hash with the developer’s private key, and appends this encrypted hash to the binary that is uploaded
(via OTA, web, or HTTP server). If the code is modified or replaced in any way by anyone by the developer with the
key, the hash will not match and the ESP8266 will reject the upload and not accept it.

Cryptographic signing only protects against tampering of binaries delivered OTA. If someone has physical access they
will always be able to flash the device over the serial port. Signing also does not encrypt anything but the hash (so
that it can’t be modified), so this does not provide protection for code inside the device. Again, if a user has physical
access they can read out your program.

Securing your private key is paramount. The same private/public keypair needs to be used to sign binaries as
the original upload. Loss of the private key associated with a binary means that you will not be able to OTA to
update any of your devices in the field. Alternatively, if the private key is copied, then the copy can be used to
sign binaries which will be accepted.

Signed Binary Format

The format of a signed binary is compatible with the standard binary format, and can be uploaded to a non-signed
ESP8266 via serial or OTA without any conditions. Note, however, that once an unsigned OTA app is overwritten by
this signed version, further updates will require signing.

As shown below, the signed hash is appended to the unsigned binary followed by the total length of the signed hash
(i.e. if the signed hash was 64 bytes, then this uint32 will contain 64). This format allows for extensibility (such
as adding in a CA-based validation scheme allowing multiple signing keys all based off of a trust anchor), and pull
requests are always welcome.

38 Chapter 6. OTA Updates

https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA
https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA
https://en.wikipedia.org/wiki/Digest_access_authentication
https://en.wikipedia.org/wiki/MD5

ESP8266 Arduino Core Documentation, Release 2.5.2

NORMAL-BINARY <SIGNED HASH> <uint32 LENGTH-OF-SIGNING-DATA-INCLUDING-THIS-32-BITS>

Signed Binary Prequisites

OpenSSL is required to run the standard signing steps, and should be available on any UNIX-like or Windows system.
As usual, the latest stable version of OpenSSL is recommended.

Signing requires the generation of an RSA-2048 key (other bit lengths are supported as well, but 2048 is a good
selection today) using any appropriate tool. The following lines will generate a new public/private keypair. Run them
in the sketch directory:

openssl genrsa -out private.key 2048
openssl rsa —-in private.key -outform PEM -pubout -out public.key

Automatic Signing — Only available on Linux and Mac

The simplest way of implementing signing is to use the automatic mode, which is only possible on Linux and Mac
presently due to missing tools under Windows. This mode uses the IDE to configure the source code to enable sigining
verification with a given public key, and signs binaries as part of the standard build process using a given public key.

To enable this mode, just include private.key and public.key in the sketch .ino directory. The IDE will call a helper
script (tools/signing.py) before the build begins to create a header to enable key validation using the given public
key, and after the build process to actually do the signing, generating a sketch.bin.signed file. When OTA is enabled
(ArduinoOTA, Web, or HTTP) the binary will only accept signed updates automatically.

When the signing process starts, the message:

’Enabling binary signing

Will appear in the IDE window before a compile is launched, and at the completion of the build the signed binary file
well be displayed in the IDE build window as:

’Signed binary: /full/path/to/sketch.bin.signed

If you receive either of the following messages in the IDE window, the signing was not completed and you will need
to verify the public.key and private.key:

Not enabling binary signing
... 0r ...
Not signing the generated binary

Manual Signing Binaries

Users may also manually sign executables and require the OTA process to verify their signature. In the main code,
before enabling any update methods, add the call:

<in globals>

BearSSL: :PublicKey signPubKey(... key contents ...);
BearSSL: :HashSHA256 hash;

BearSSL::SigningVerifier sign(&signPubKey);

<in setup/()>
Update.installSignature(&hash, &sign);

6.1. Introduction 39

ESP8266 Arduino Core Documentation, Release 2.5.2

The above snipped creates a BearSSL public key, a SHA256 hash verifier, and tells the Update object to use them to
validate any updates it receives from any method.

Compile the sketch normally and, once a .bin file is available, sign it using the signer script:

<ESP8266ArduioPath>/tools/signing.py —--mode sign —--privatekey <path-to-private.key> -—
—bin <path-to-unsigned-bin> --out <path-to-signed-binary>

6.1.4 Safety

OTA process takes ESP’s resources and bandwidth during upload. Then module is restarted and a new sketch executed.
Analyse and test how it affects functionality of existing and new sketch.

If ESP is placed in remote location and controlling some equipment, you should put additional attention what happens
if operation of this equipment is suddenly interrupted by update process. Therefore, decide how to put this equipment
into safe state before starting the update. For instance, your module may be controlling a garden watering system in a
sequence. If this sequence is not properly shut down and a water valve left open, your garden may be flooded.

The following functions are provided with ArduinoOTA library and intended to handle functionality of your applica-
tion during specific stages of OTA, or on an OTA error:

void onStart (OTA_CALLBACK (fn));

void onEnd (OTA_CALLBACK (fn)) ;

void onProgress (OTA_CALLBACK_PROGRESS (fn));
void onError (OTA_CALLBACK_ERROR (fn));

6.1.5 OTA Basic Requirements

Flash chip size should be able to hold the old sketch (currently running) and the new sketch (OTA) at the same time.

Keep in mind that the File system and EEPROM for example needs space too (one time) see Flash layout.

ESP.getFreeSketchSpace () ;

can be used for checking the free space for the new sketch.

For overview of memory layout, where new sketch is stored and how it is copied during OTA process, see Update
process - memory view.

The following chapters provide more details and specific methods of doing OTA.

6.2 Arduino IDE

Uploading modules wirelessly from Arduino IDE is intended for the following typical scenarios: - during firmware
development as a quicker alternative to loading over a serial, - for updating small quantity of modules, - only if modules
are available on the same network as the computer with Arduino IDE.

6.2.1 Requirements

* The ESP and the computer must be connected to the same network.

40 Chapter 6. OTA Updates

https://github.com/esp8266/Arduino/tree/master/libraries/ArduinoOTA

ESP8266 Arduino Core Documentation, Release 2.5.2

6.2.2 Application Example

Instructions below show configuration of OTA on NodeMCU 1.0 (ESP-12E Module) board. You can use any other
board assuming that it meets requirements described above. This instruction is valid for all operating systems sup-
ported by Arduino IDE. Screen captures have been made on Windows 7 and you may see small differences (like name
of serial port), if you are using Linux and MacOS.

1. Before you begin, please make sure that you have the following s/w installed:
* Arduino IDE 1.6.7 or newer - https://www.arduino.cc/en/Main/Software

* esp8266/Arduino platform package 2.0.0 or newer - for instructions follow https://github.com/esp8266/
Arduino#installing-with-boards-manager

* Python 2.7 - https://www.python.org/

Note: Windows users should select “Add python.exe to Path” (see below — this option is not selected by
default).

B python 2,710 Setup 5
Customize Python 2.7.10

Select the way you want festures to be nstaled,
Click an the icons in the tree balaw to change the
way featuras will be instaled,

=~ | Register Extensions e
S| TelfTk

=~ | Documentation

=3 = | Uity Scripts

=~ pip

(== Test suite

select this option =i pythonexe toPath |

Prapard CPythan27), to the systemn Path

varigble, This dlows you to type python’ into a

pljlt h()n command prompt without neading the ful path.
for Thies faature requires OKB on your hard drive,

windows

| Disk Usage | | Advanced | [=Back |[mexts | cancel

2. Now prepare the sketch and configuration for the upload over a serial port.

 Start Arduino IDE and load sketch BasicOTA.ino available under File > Examples > ArduinoOTA

6.2. Arduino IDE 41

https://www.arduino.cc/en/Main/Software
https://github.com/esp8266/Arduino#installing-with-boards-manager
https://github.com/esp8266/Arduino#installing-with-boards-manager
https://www.python.org/

ESP8266 Arduino Core Documentation, Release 2.5.2

MNew Ctri+N

Open... Ctrd+0

Open Recent

Sketchbook |

Examples &

Close Cri+ W Examiples fromi Cu o)
— Cutes adstruit qotecn | 10@d this sketch
Save As.. Ctri+Shift+3 Adafruit_ST7735

Page Setup Ctrl+Shift+ P Arduing0TA
Print Ctri+P BMPOES
DallasTemperature

Preferemces Ctrl+ Comma DHTIb

e Update SSID and password in the sketch, so the module can join your Wi-Fi network
#include <ArduinolTA.h> | |1
FED|EIEE i ik e ok ok o ke ke R

const char*[32id = ".......... = A

censt char*|paasword = "..........": w.th SS'D and password

vold setup() { tl:l ‘,r'DI.II" W|'Fi ﬂEtWUrk
Serial.begin (115200} ; |

* Configure upload parameters as below (you may need to adjust configuration if you are using a different

File Edit Sketch - Help

Auste Format
Archive Sketch
BasicOTAS Fix Encoding & Reload
#include <ESE Serial Monitar Ctrl+ Shift= M
= lude <ESP il Pl ol Shif
#include <WiF snilriE Cut-shifi-L
Fraclude A popaags Sketch Data Upload 1
conat char® 3 | Board: "NodeMCU 1.0 (ESP-12E Module]'l ’
const char® R CPU Frequency: “80 MHz" - u plUEId
oid setup() Flash Size: "4M (3M SPIFFS)" co nfigu ration
Serial .begl Uplead Speed: "921600"
sesatenin - [ooyrcomo |
WiFi.mode (W —

WiFi.begin{

wate s gelect serial port where your

Serial .py

4asze ESP8266 is connected to

ESP.reatafii]:

module):

Note: Depending on version of platform package and board you have, you may see Upload Using:
in the menu above. This option is inactive and it does not matter what you select. It has been left for
compatibility with older implementation of OTA and finally removed in platform package version 2.2.0.

3. Upload the sketch (Ctrl+U). Once done, open Serial Monitor (Ctrl+Shift+M) and check if module has joined
your Wi-Fi network:

Note: ESP module should be reset after serial upload. Otherwise subsequent steps will not work. Reset may be done

42 Chapter 6. OTA Updates

ESP8266 Arduino Core Documentation, Release 2.5.2

File Edit Sketch Tool Help

14%| 51F) 5 18 bl%, & 'r'bf bSfnnilnnsdd b pSilrlirips

BasicOTA S address: 192.168.1.115 |

bhs
ArduinoDTA.begind) ;
Serial.printin{"Ready”): 2) module successfully

Serial.print (*IF address: "):

:icn-.u.;;:'_:'.:;.'.n:'--'n':..;::;_;31;]; ; jDinEd Wi-Fi network

HodeMEL 1.0 (EEP |Naline ending + | | 115300 baud

automatically for you after opening serial monitor as visible on the screenshot above. It depends on how you have
DTR and RTS wired from USB-Serial converter to the ESP. If reset is not done automatically, then do it by pressing
reset button or manually cycling the power. For more details why this should be done please refer to FAQ regarding
ESP.restart ().

4. Only if module is connected to network, after a couple of seconds, the esp8266-ota port will show up in Arduino
IDE. Select port with IP address shown in the Serial Monitor window in previous step:

Note: If OTA port does not show up, exit Arduino IDE, open it again and check if port is there. If it does not
help, check your firewall and router settings. OTA port is advertised using mDNS service. To check if port is
visible by your PC, you can use application like Bonjour Browser.

5. Now get ready for your first OTA upload by selecting the OTA port:

Note: The menu entry Upload Speed: does not matter at this point as it concerns the serial port. Just left it
unchanged.

6. If you have successfully completed all the above steps, you can upload (Ctrl+U) the same (or any other) sketch
over OTA:

Note: To be able to upload your sketch over and over again using OTA, you need to embed OTA routines inside.
Please use BasicOTA.ino as an example.

Password Protection

Protecting your OTA uploads with password is really straightforward. All you need to do, is to include the following
statement in your code:

ArduinoOTA.setPassword((const char +)"123");

Where 123 is a sample password that you should replace with your own.

Before implementing it in your sketch, it is a good idea to check how it works using BasicOTA.ino sketch available
under File > Examples > ArduinoOTA. Go ahead, open BasicOTA.ino, uncomment the above statement that is already
there, and upload the sketch. To make troubleshooting easier, do not modify example sketch besides what is absolutely

6.2. Arduino IDE 43

ESP8266 Arduino Core Documentation, Release 2.5.2

File Edit Sketch |Tools| Help
Auto Format
Archive Sketch
Easctng Fix Encoding & Reload
Ardunnol . i)]
Sarial pr Serial Monitor Ctrl+Shift+M
if (error Semal Plotter Ctrl+Shift+L
elae if |
elae 1f ESP8.266 Sketch Data Upload
elae if {
elae if | Board: “ModeMCU 1.0 (ESP-12E Module)®
i CPU Frequency: "80 MHz"
ArdEinolTA. Flash Size: "4 (3M SPIFES)"

Serial. a i
Serial. Upload Speed: "021600

Serial.prin Port: "COMILD" Senal ports

1 M7
Programmer: "AVRISP mkll” <0
COona

vold Leopd) | Burn Bootloader
ArduinolTA . RELII=(]T 1 COnID

Metwork ports

ota-hygrostat a OTA p':'rt SPEXGEE Module)
OTA-DimSwitc ic ESPE2GE Module)

espl266-0eabls at192.168.1.115 (Generic ESPE266 Module)

HodehCU 10 (ESF-1ZE Maod

I BasicOTA | Arduing L6
[File Edit Sketch [Tools) Help

Aute Format Ctrl+T
Archive Sketch

BasicOTAS Fix Encoding & Reload
AR AOLITA .

Serial.pi Serial Monitor Ctrl+Shift+h

if (errom Senal Plotber Cirl+Shift+L
glas 1f |

glae if | ESPE266 Sketch Data Upload

elae if |

glae if | Board: “ModebCU 1.0 (ESP-12E Modu

i CPU Frequency: "80 MHz"

changed configuration

ir{]::j::‘ﬂ'{'."-. Flash Size: "48 BM EPIFPS]" fDI' DTA Uplﬂad
&rlal.prin

Serial.prin Upload Speed: "521600" .

Serial.prin | Pork "espB266-Deabls at192.168.1.115 (Generic ESPE266 M.." |

Pregrammer “AVRISP mkl®

vald loep(] { Burn Bootloader
ArduinodTA . ETI= (T Y

iy

44 Chapter 6. OTA Updates

ESP8266 Arduino Core Documentation, Release 2.5.2

(2% BasicOTA | Arduino 167 L=l

File Edit Sketch Tools Help

ArduinclTA

Sarial.prl
Serial.pring (™I
Serial.println{WiFi.lc

void loop() |
Arduino0TA. handle ()7
Fl

OTA upload
complete

S, Jol DYLES

HodeldCU 1.0 (ESP-AZE Madule], 80 MHZ 00, k[SFIFFS) on 102,183 1.115

required. This is including original simple 123 OTA password. Then attempt to upload sketch again (using OTA).
After compilation is complete, once upload is about to begin, you should see prompt for password as follows:

Enter the password and upload should be initiated as usual with the only difference being Authenticating. ..OK
message visible in upload log.

You will not be prompted for a reentering the same password next time. Arduino IDE will remember it for you. You
will see prompt for password only after reopening IDE, or if you change it in your sketch, upload the sketch and then
try to upload it again.

Please note, it is possible to reveal password entered previously in Arduino IDE, if IDE has not been closed since last
upload. This can be done by enabling Show verbose output during: upload in File > Preferences and attempting to
upload the module.

The picture above shows that the password is visible in log, as it is passed to espota.py upload script.
Another example below shows situation when password is changed between uploads.

When uploading, Arduino IDE used previously entered password, so the upload failed and that has been clearly
reported by IDE. Only then IDE prompted for a new password. That was entered correctly and second attempt to
upload has been successful.

Troubleshooting

If OTA update fails, first step is to check for error messages that may be shown in upload window of Arduino IDE. If
this is not providing any useful hints, try to upload again while checking what is shown by ESP on serial port. Serial
Monitor from IDE will not be useful in that case. When attempting to open it, you will likely see the following:

This window is for Arduino Y1un and not yet implemented for esp8266/Arduino. It shows up because IDE is attempting
to open Serial Monitor using network port you have selected for OTA upload.

Instead you need an external serial monitor. If you are a Windows user check out Termite. This is handy, slick and
simple RS232 terminal that does not impose RTS or DTR flow control. Such flow control may cause issues if you are
using respective lines to toggle GPIO0 and RESET pins on ESP for upload.

6.2. Arduino IDE 45

https://www.compuphase.com/software_termite.htm

ESP8266 Arduino Core Documentation, Release 2.5.2

File Edit Sketch Tools Help

BasicOTA

Ff Mo authentication by defaulc
ArduinodTA. secPassword{ (conat char #*)™123%):

’ ArduinoOTA. onStact (10}

@

Type board password to upload a new sketch

| Concel | [pload |

f (erzrox == QTA BEGIN ERROR) Serial.println{"Begin F
f (ercor ==

File Edit 5Sketch Tools Help

BasicOTA
Ff Ho authentication by defaulc
ArduincOTA. setPassword { {conat char #

hrri i e TR ARSrarr LT 0Y
i 1]

Authentication
successful

46 Chapter 6. OTA Updates

ESP8266 Arduino Core Documentation, Release 2.5.2

(2 BasicOTA | Arduino L6T =

File Eda 3Sketch Tools Help

OO0 BBA

Landtase{[]1{) |

Password passing
to upload script

RodeMCU 1.0

(5 BasicOTA | Arduino L6T L

File Edit Sketch Taools Help

00 BEHERA

BasicOTi

cicacion by defagle

setFasawoed | {corat char #) ™13 -.}':.'

ArduincdTE . onStazt{[]1[] {

HedeWiGU 1.0 [ESP-1ZE Mgdule]). B0 MHz. Senal, SPIFFS) an 182 1681

c A ¢

Type board password to access its console

Password:

Cancel H Upload

6.2. Arduino IDE 47

ESP8266 Arduino Core Documentation, Release 2.5.2

Select COM port and baud rate on external terminal program as if you were using Arduino Serial Monitor. Please see
typical settings for Termite below:

rSeﬁaI port settings

Port configuration Transmitted text Options

Port coms ~ () Appendnothing ["|stay on top

(") Append CR Quit on Escape

(") Append LF Autocomplete edit line
Data bitz (@ Append CR-LF [] Close port when inactive

Stop bits [[Local echo Plug-ns
Parity Received text

Flow contral Font | default hd

[] weord wrap

Baud rate 115200 -

Forward

IJser interface language English (en) - [Cancel] [

Then run OTA from IDE and look what is displayed on terminal. Successful ArduinoOTA process using BasicOTA.ino
sketch looks like below (IP address depends on your network configuration):

If upload fails you will likely see errors caught by the uploader, exception and the stack trace, or both.
Instead of the log as on the above screen you may see the following:
If this is the case, then most likely ESP module has not been reset after initial upload using serial port.
The most common causes of OTA failure are as follows:
* not enough physical memory on the chip (e.g. ESPO1 with 512K flash memory is not enough for OTA).

* too much memory declared for SPIFFS so new sketch will not fit between existing sketch and SPIFFS — see
Update process - memory view.

* too little memory declared in Arduino IDE for your selected board (i.e. less than physical size).
* not resetting the ESP module after initial upload using serial port.

For more details regarding flash memory layout please check File system. For overview where new sketch is stored,
how it is copied and how memory is organized for the purpose of OTA see Update process - memory view.

6.3 Web Browser

Updates described in this chapter are done with a web browser that can be useful in the following typical scenarios:
» after application deployment if loading directly from Arduino IDE is inconvenient or not possible,
« after deployment if user is unable to expose module for OTA from external update server,

* to provide updates after deployment to small quantity of modules when setting an update server is not practica-
ble.

6.3.1 Requirements

* The ESP and the computer must be connected to the same network.

48 Chapter 6. OTA Updates

https://www.compuphase.com/software_termite.htm

ESP8266 Arduino Core Documentation, Release 2.5.2

| Cocomitaobe s b) (setings) (_Gear) (about) [Giose)

Frogress: 94%
Frograss. 94%
Fragress: 95%
Frogress: 96%
Fragress: 96%
Frogress: 97%
Fragress: 98%
Frogress: 98%
Fragress: 99%
Frogress: 1|:||:|°/.,|
End

load =401 M000, len 1264, room 16
til

chiksum [d2

caurm D2

F@op:l

Id

Booting

Fueady

IF address; 1921681115

4] |

-

ets Jan 8 2013 rst cause?, boot mode:(3.6)

[0M7 115200 bps, 81, no handshake| | Settings | | Ciear | [About | | Close |

FTOGQrEss. Al
Fragress: 92%
Frogress: 93%
Progress: 93%
Frogress; 94%
Progress: 94%;
Fragress: 95%
Frogress: 96%
Progress: 96%
Progress; 97%
Frogress:; 97%
Frogress: 98%
FProgress: 99%
Frogress: 99%2
Progress; 100%
End

-

Failed attempt

ets Jan 82013 rst cause 2, boot mode:(1.6)

- toresetbys/w

it reset

ets Jan © 2013.rst cause 4, hoot mode:(1.6)

=

' Failed attempt

to reset by wdt

1] ']

6.3. Web Browser

49

ESP8266 Arduino Core Documentation, Release 2.5.2

6.3.2 Implementation Overview

Updates with a web browser are implemented using ESP8266HTTPUpdateServer class together with
ESP8266WebServer and ESP8266mDNS classes. The following code is required to get it work:

setup()

MDNS.begin (host) ;

httpUpdater.setup (&¢httpServer) ;
httpServer.begin();

MDNS.addService ("http", "tcp", 80);

loop()

httpServer.handleClient ();

6.3.3 Application Example

The sample implementation provided below has been done using:
 example sketch WebUpdater.ino available in ESP8266HTTPUpdateServer library,
* NodeMCU 1.0 (ESP-12E Module).
You can use another module if it meets previously described requirements.
1. Before you begin, please make sure that you have the following software installed:

* Arduino IDE and 2.0.0-rc1 (of Nov 17, 2015) version of platform package as described under https://
github.com/esp8266/Arduino#installing- with-boards-manager

» Host software depending on O/S you use:
(a) Avahi https://avahi.org/ for Linux
(b) Bonjour https://www.apple.com/support/bonjour/ for Windows
(c) Mac OSX and iOS - support is already built in / no any extra s/w is required
2. Prepare the sketch and configuration for initial upload with a serial port.

e Start Arduino IDE and load sketch WebUpdater.ino available under File > Examples >
ESP8266HTTPUpdateServer.

» Update SSID and password in the sketch, so the module can join your Wi-Fi network.

* Open File > Preferences, look for “Show verbose output during:” and check out “compilation” option.

Sketchbook location:
C:\sers\roysztofDocuments Wrduing Browse
Edtor ngusge: ¢ Select this option v | (requires restart of Arcuino)

Editor font size: |12 "‘\-‘,_,-"’
IQHWWanemmmtdwmg:Fiumphumlrfqmﬁd
Cuuﬁﬁnmnixp::ﬂrt v:

50 Chapter 6. OTA Updates

https://github.com/esp8266/Arduino#installing-with-boards-manager
https://github.com/esp8266/Arduino#installing-with-boards-manager
https://avahi.org/
https://www.apple.com/support/bonjour/

ESP8266 Arduino Core Documentation, Release 2.5.2

Note: This setting will be required in step 5 below. You can uncheck this setting afterwards.

3. Upload sketch (Ctrl+U). Once done, open Serial Monitor (Ctrl+Shift+M) and check if you see the following
message displayed, that contains url for OTA update.

- OTA update url

;1 daBl Sgf| § 8¢ cICO & *“["cf cSlogil”
oting Sketch...
HTIFUpdaceServer ready! l:ll:enl ht:.p:_.f.-'espfzsﬁ—uehupdate.lr::a].,fupdateI'_:'. your browser

¢ ol 1.850Ec g%

Note: Such message will be shown only after module successfully joins network and is ready for an OTA
upload. Please remember about resetting the module once after serial upload as discussed in chapter Arduino
IDE, step 3.

4. Now open web browser and enter the url provided on Serial Monitor, i.e. http://esp8266-webupdate.
local/update. Once entered, browser should display a form like below that has been served by your module.
The form invites you to choose a file for update.

" espB2E6-webupdatalacal %

€« C [espB266-webupdate.local/update

Choose File | No file chosen U pdate

Note: If entering http://esp8266-webupdate.local/update does not work, try replacing
esp8266-webupdate with module’s IP address. For example, if your module IP is 192.168.1.100
then url should be http://192.168.1.100/update. This workaround is useful in case the host software
installed in step 1 does not work. If still nothing works and there are no clues on the Serial Monitor, try to
diagnose issue by opening provided url in Google Chrome, pressing F12 and checking contents of “Console”
and “Network” tabs. Chrome provides some advanced logging on these tabs.

5. To obtain the file, navigate to directory used by Arduino IDE to store results of compilation. You can check the
path to this file in compilation log shown in IDE debug window as marked below.

6. Now press “Choose File” in web browser, go to directory identified in step 5 above, find the file “WebUp-
dater.cpp.bin” and upload it. If upload is successful, you will see “OK” on web browser like below.

Module will reboot that should be visible on Serial Monitor:

Just after reboot you should see exactly the same message HTTPUpdateServer ready! Open http:/
/esp8266-webupdate.local/update in your browser like in step 3. This is because module
has been loaded again with the same code — first using serial port, and then using OTA.

Once you are comfortable with this procedure, go ahead and modify WebUpdater.ino sketch to print some additional
messages, compile it, locate new binary file and upload it using web browser to see entered changes on a Serial
Monitor.

You can also add OTA routines to your own sketch following guidelines in /mplementation Overview above. If this is
done correctly, you should be always able to upload new sketch over the previous one using a web browser.

In case OTA update fails dead after entering modifications in your sketch, you can always recover module by loading
it over a serial port. Then diagnose the issue with sketch using Serial Monitor. Once the issue is fixed try OTA again.

6.3. Web Browser 51

ESP8266 Arduino Core Documentation, Release 2.5.2

File Edit Sketch Tools Help

WebUpdater

ginclude <ESPE2GEWLFL.h>
#incTude cHiFiTliant he

Global variablea ua

" espl2E6-webupdatelocal X
= C [esp8266-webupdate.local/update

oK

;1 A48 S&F| §8& cI00 8 "5 cSlogdl olEe # xS0 {1 spfind Dd 5% ¢ ofl 1,508 i"0d
[Booting Sketch. ..
HTIPUpdaceServer ready! Open htop:/fespEléb-webupdate.local/update in your broweer

N ets Jan B 2013, rst cause:l, boot mode: (3, 6]

1oad 0xd4010f000, len 1264, room 16
tail 0

chiaum Ox42

coum Oxd 2

gep:0 reboot log

A

Booting Sketch. ..
HTTFUpdateServer ready! Open htep://espEléé-webupdere.local /update in your browser

4 ur ¥

| 4] Autoscrol Nolneending | | 115200 baud

ke

52 Chapter 6. OTA Updates

ESP8266 Arduino Core Documentation, Release 2.5.2

6.4 HTTP Server

ESPhttpUpdate class can check for updates and download a binary file from HTTP web server. It is possible to
download updates from every IP or domain address on the network or Internet.

6.4.1 Requirements

¢ web server

6.4.2 Arduino code

Simple updater

Simple updater downloads the file every time the function is called.

ESPhttpUpdate.update ("192.168.0.2", 80, "/arduino.bin");

Advanced updater
Its possible to point update function to a script at the server. If version string argument is given, it will be sent to the
server. Server side script can use this to check if update should be performed.

Server side script can respond as follows: - response code 200, and send the firmware image, - or response code 304
to notify ESP that no update is required.

t_httpUpdate_return ret = ESPhttpUpdate.update("192.168.0.2", 80, "/esp/update/
—arduino.php", "optional current version string here");
switch (ret) {
case HTTP_UPDATE_FAILED:
Serial.println (" [update] Update failed.");
break;
case HTTP_UPDATE_NO_UPDATES:
Serial.println (" [update] Update no Update.");
break;
case HTTP_UPDATE_OK:
Serial.println (" [update] Update ok."); // may not called we reboot the ESP
break;

6.4.3 Server request handling

Simple updater

For the simple updater the server only needs to deliver the binary file for update.

Advanced updater

For advanced update management a script needs to run at the server side, for example a PHP script. At every update
request the ESP sends some information in HTTP headers to the server.

Example header data:

6.4. HTTP Server 53

ESP8266 Arduino Core Documentation, Release 2.5.2

[HTTP_USER_AGENT] => ESP8266-http-Update
[HTTP_X_ESP8266_STA _MAC] => 18:FE:AA:AA:AA:AA
[HTTP_X_ESP8266_AP_MAC] => 1A:FE:AA:AA:AA:AA
[HTTP_X_ESP8266_FREE_SPACE] => 671744
[HTTP_X_ESP8266_SKETCH_SIZE] => 373940
[HTTP_X_ESP8266_SKETCH_MD5] => ab56f8ef78albebd812f62067dafl1408a
[HTTP_X_ESP8266_CHIP_SIZE] => 4194304
[HTTP_X_ESP8266_SDK_VERSION] => 1.3.0

[HTTP_X_ESP8266_VERSION] => DOOR-7-gl4f53al9

With this information the script now can check if an update is needed. It is also possible to deliver different binaries
based on the MAC address for example.

Script example:

<?PHP
header ('Content-type: text/plain; charset=utf8', true);

function check_header ($Sname, S$value = false) ({
if(!isset ($_SERVER[Sname])) {
return false;
}
if (Svalue && $_SERVER[Sname] != S$value) {
return false;
}

return true;

function sendFile ($path) {
header ($_SERVER["SERVER_PROTOCOL"].' 200 OK', true, 200);
header ('Content-Type: application/octet-stream', true);
header ('Content-Disposition: attachment; filename='.basename ($Spath));
header ('Content-Length: '.filesize ($path), true);
header ('x-MD5: '.md5_file(Spath), true);
readfile (Spath);

if (!check_header ("HTTP_USER_AGENT', 'ESP8266-http-Update')) {
header ($_SERVER["SERVER_PROTOCOL"].' 403 Forbidden', true, 403);
echo "only for ESP8266 updater!\n";
exit ();

}

if(

check_header ("HTTP_X_ESP8266_STA_MAC") ||
!check_header ("HTTP_X_ESP8266_AP_MAC') |
!check_header ("HTTP_X_ESP8266_FREE_SPACE") ||
I check_header ('HTTP_X_ESP8266_SKETCH_SIZE') ||
!check_header ('HTTP_X_ESP8266_SKETCH_MD5") ||
!check_header ("HTTP_X_ESP8266_CHIP_SIZE") |

(

\
!check_header ("HTTP_X_ESP8266_SDK_VERSION'")

header ($_SERVER["SERVER_PROTOCOL"]."' 403 Forbidden', true, 403);
echo "only for ESP8266 updater! (header)\n";
exit ();

(continues on next page)

54 Chapter 6. OTA Updates

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

Sdb = array (
"18:FE:AA:AA:AA:AA" => "DOOR-7-gl4f53al1l9",
"18:FE:AA:AA:AA:BB" => "TEMP-1.0.0"

)i

if (!isset (Sdb[$_SERVER['HTTP_X_ESP8266_STA MAC']11)) {

header ($_SERVER["SERVER_PROTOCOL"].' 500 ESP MAC not configured for updates',
—true, 500);
}

$localBinary = "./bin/".$db[$_SERVER['HTTP_X_ ESP8266_STA_MAC']].".bin";

// Check if version has been set and does not match, if not, check if

// MD5 hash between local binary and ESP8266 binary do not match if not.

// then no update has been found.

if ((!check_header ("HTTP_ X ESP8266 SDK_VERSION') && S$db[$ SERVER['HTTP X ESP8266 STA

oMAC']] != $ SERVER['HTTP_X ESP8266 VERSION'])
|| $_SERVER["HTTP_X_ESP8266_SKETCH_MD5"] != md5_file($localBinary)) |
sendFile($localBinary);

} else {
header (S_SERVER["SERVER_PROTOCOL"].' 304 Not Modified', true, 304);

header ($S_SERVER["SERVER_PROTOCOL"].' 500 no version for ESP MAC', true, 500);

6.5 Stream Interface

TODO describe Stream Interface

The Stream Interface is the base for all other update modes like OTA, http Server / client.

6.6 Updater class

Updater is in the Core and deals with writing the firmware to the flash, checking its integrity and telling the bootloader
(eboot) to load the new firmware on the next boot.

Note: The bootloader command will be stored into the first 128 bytes of user RTC memory, then it will be retrieved
by eboot on boot. That means that user data present there will be lost (per discussion in #5330).

6.6.1 Update process - memory view

» The new sketch will be stored in the space between the old sketch and the spiff.
* on the next reboot the “eboot” bootloader check for commands.
* the new sketch is now copied “over” the old one.

¢ the new sketch is started.

6.5. Stream Interface 55

https://github.com/esp8266/Arduino/pull/5330#issuecomment-437803456

ESP8266 Arduino Core Documentation, Release 2.5.2

start:

current sketch spiffs

update:

current sketch new sketch spiffs

reboot:

new sketch

56 Chapter 6. OTA Updates

CHAPTER /

Guide to PROGMEM on ESP8266 and Arduino IDE

7.1 Intro

PROGMEM is a Arduino AVR feature that has been ported to ESP8266 to ensure compatability with existing Arduino
libraries, as well as, saving RAM. On the esp8266 declaring a string such as const char * xyz = "this is
a string" will place this string in RAM, not flash. It is possible to place a String into flash, and then load it into
RAM when it is needed. On an 8bit AVR this process is very simple. On the 32bit ESP8266 there are conditions that
must be met to read back from flash.

On the ESP8266 PROGMEM is a macro:

’ #define PROGMEM ICACHE _RODATA ATTR

ICACHE_RODATA_ATTR is defined by:

’ #define ICACHE RODATA ATTR _ _attribute ((section(".irom.text")))

Which places the variable in the .irom.text section in flash. Placing strings in flash requires using any of the methods
above.

#i## Declare a global string to be stored in flash.

’static const char xyz[] PROGMEM = "This is a string stored in flash";

7.2 Declare a flash string within code block.

For this you can use the PSTR macro. Which are all defined in pgmspace.h

57

https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h

ESP8266 Arduino Core Documentation, Release 2.5.2

#define PGM_P const char *
#define PGM_VOID P const void #*
#define PSTR(s) (__extension__ ({static const char __c[] PROGMEM = (s); & c[0];}))

In practice:

void myfunction (void) {

PGM_P xyz = PSTR("Store this string in flash");

const char x abc = PSTR("Also Store this string in flash");
}

The two examples above will store these strings in flash. To retrieve and manipulate flash strings they must be read
from flash in 4byte words. In the Arduino IDE for esp8266 there are several functions that can help retrieve strings
from flash that have been stored using PROGMEM. Both of the examples above return const char . However
use of these pointers, without correct 32bit alignment you will cause a segmentation fault and the ESP8266 will crash.
You must read from the flash 32 bit aligned.

7.3 Functions to read back from PROGMEM

Which are all defined in pgmspace.h

int memcmp_P (const voidx bufl, PGM_VOID_P buf2P, size_t size);
voidx memccpy_P (void+ dest, PGM_VOID_P src, int ¢, size_t count);
void+ memmem_P (const voidx buf, size_t bufSize, PGM_VOID_P findP, size_t findPSize);
voidx memcpy_P (voidx dest, PGM_VOID_P src, size_t count);

char* strncpy_P (charx dest, PGM_P src, size_t size);

char+ strcpy_P (dest, src)

char~ strncat_P (charx dest, PGM_P src, size_t size);

char+ strcat_P (dest, src)

int strncmp_P (const charx strl, PGM_P str2P, size_t size);

int strcmp_P (strl, str2P)

int strncasecmp_P (const charx strl, PGM_P str2P, size_t size);
int strcasecmp_P (strl, str2P)

size_t strnlen_P (PGM_P s, size_t size);

size t strlen_ P (strP)

char+ strstr_P (const charx haystack, PGM_P needle);

int printf P(PGM_P formatP, ...);
int sprintf_ P (char xstr, PGM_P formatP, ...);
int snprintf_P (char *str, size_t strSize, PGM_P formatP, ...);

int vsnprintf_ P (char xstr, size_t strSize, PGM_P formatP, wva_list ap);

There are a lot of functions there but in reality they are _P versions of standard c¢ functions that are adapted to read
from the esp8266 32bit aligned flash. All of them take a PGM_P which is essentially a const char «. Under the
hood these functions all use, a process to ensure that 4 bytes are read, and the request byte is returned.

This works well when you have designed a function as above that is specialised for dealing with PROGMEM pointers
but there is no type checking except against const char =. This means that it is totally legitimate, as far as the
compiler is concerned, for you to pass it any const char » string, which is obviously not true and will lead to
undefined behaviour. This makes it impossible to create any overloaded functions that can use flash strings when they
are defined as PGM_P. If you try you will get an ambiguous overload error as PGM_P == const char x*.

Enter the __FlashStringHelper... This is a wrapper class that allows flash strings to be used as a class, this means
that type checking and function overloading can be used with flash strings. Most people will be familiar with the F ()
macro and possibly the FPSTR() macro. These are defined in WString.h:

58 Chapter 7. Guide to PROGMEM on ESP8266 and Arduino IDE

https://github.com/esp8266/Arduino/blob/master/cores/esp8266/pgmspace.h
https://github.com/esp8266/Arduino/blob/master/cores/esp8266/WString.h#L37

ESP8266 Arduino Core Documentation, Release 2.5.2

#define FPSTR (pstr_pointer) (reinterpret_cast<const __FlashStringHelper #*>(pstr_
—pointer))
#define F(string_literal) (FPSTR(PSTR(string_literal)))

So FSPTR () takes a PROGMEM pointer to a string and casts it to this __FlashStringHelper class. Thus if
you have defined a string as above xyz you can use FPSTR () to convertitto___FlashStringHelper for passing
into functions that take it.

static const char xyz[] PROGMEM = "This is a string stored in flash";
Serial.println (FPSTR (xyz));

The F () combines both of these methods to create an easy and quick way to store an inline string in flash, and return
the type __FlashStringHelper. For example:

Serial.println(F ("This is a string stored in flash"));

Although these two functions provide a similar function, they serve different roles. FPSTR () allows you to define a
global flash string and then use it in any function that takes __FlashStringHelper. F () allows you to define
these flash strings in place, but you can’t use them anywhere else. The consequence of this is sharing common strings

is possible using FPSTR () butnot F (). _ _FlashStringHelper is what the String class uses to overload its
constructor:
String (const char xcstr = ""); // constructor from const char *

String(const String é&str); // copy constructor
String(const __ FlashStringHelper =xstr); // constructor for flash strings

This allows you to write:

String mystring (F ("This string is stored in flash"));

How do I write a function to use __FlashStringHelper? Simples: cast the pointer back to a PGM_P and use the _P
functions shown above. This an example implementation for String for the concat function.

unsigned char String::concat (const _ FlashStringHelper » str) {

if (!str) return 0; // return if the pointer is void

int length = strlen_P ((PGM_P)str); // cast it to PGM_P, which is basically const,,
—char #, and measure it using the _P version of strlen.

if (length == 0) return 1;
unsigned int newlen = len + length;
if (!reserve(newlen)) return 0; // create a buffer of the correct length

strcpy_P (buffer + len, (PGM_P)str); //copy the string in using strcpy P
len = newlen;
return 1;

7.4 How do | declare a global flash string and use it?

static const char xyz[] PROGMEM = "This is a string stored in flash. Len = %u";

void setup () {

Serial.begin(115200); Serial.println();

Serial.println(FPSTR(xyz)); // just prints the string, must convert it to_
—FlashStringHelper first using FPSTR().

(continues on next page)

7.4. How do | declare a global flash string and use it? 59

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

Serial.printf_ P (xyz, strlen_P(xyz)); // use printf with PROGMEM string

7.5 How do | use inline flash strings?

void setup () {
Serial.begin(115200); Serial.println();
Serial.println(F("This is an inline string")); //
Serial.printf_P(PSTR("This is an inline string using printf %$s"), "hello");

7.6 How do | declare and use data in PROGMEM?

const size_t len_xyz = 30;

const uint8_t xyz[] PROGMEM = ({
0x53, 0Ox6l1, 0x79, 0x20, 0x48, 0x65, Ox6c, Ox6c, Ox6f, 0x20,
0x74, Ox6f, 0x20, 0x4d, 0x79, 0x20, Ox4c, 0x69, 0x74, 0x74,
Ox6c, 0Ox65, 0x20, Ox46, 0x72, 0x69, 0x65, Ox6e, 0x64, 0x00};

void setup () {
Serial.begin(115200); Serial.println();
uint8_t * buf = new uint8_t[len_xyz];
if (buf) {
memcpy_P (buf, xyz, len_xyz);
Serial.write (buf, len_xyz); // output the buffer.
}

7.7 How do | declare some data in PROGMEM, and retrieve one byte
from it.

Declare the data as done previously, then use pgm_read_byte to get the value back.

const size_t len_xyz = 30;

const uint8_t xyz[] PROGMEM = ({
0x53, Oxe6l, 0x79, 0x20, 0x48, 0x65, 0x6c, Ox6c, Ox6f, 0x20,
0x74, 0Ox6f, 0x20, 0x4d, 0x79, 0x20, Ox4c, 0x69, 0x74, 0x74,
Ox6c, 0Ox65, 0x20, Ox46, 0x72, 0x69, 0x65, Oxo6e, 0x64, 0x00

bi

void setup () {
Serial.begin(115200); Serial.println();
for (int i1 = 0; i < len_xyz; i++) {
uint8_t byteval = pgm_read_byte(xyz + 1i);
Serial.write (byteval); // output the buffer.

60 Chapter 7. Guide to PROGMEM on ESP8266 and Arduino IDE

ESP8266 Arduino Core Documentation, Release 2.5.2

7.8 In summary

It is easy to store strings in flash using PROGMEM and PSTR but you have to create functions that specifically use the
pointers they generate as they are basically const char . Onthe other hand FPSTR and F () give you a class that
you can do implicit conversions from, very useful when overloading functions, and doing implicit type conversions. It
is worth adding that if you wish to store an int, float or pointer these can be stored and read back directly as they
are 4 bytes in size and therefor will be always aligned!

Hope this helps.

7.8. In summary 61

ESP8266 Arduino Core Documentation, Release 2.5.2

62

Chapter 7. Guide to PROGMEM on ESP8266 and Arduino IDE

CHAPTER 8

Using GDB to Debug Applications

ESP applications can be debugged using GDB, the GNU debugger, which is included with the standard IDE installa-
tion. This note will only discuss the ESP specific steps, so please refer to the main GNU GDB documentation.

Note that as of 2.5.0, the toolchain moved from the ESPRESSIF patched, closed-source version of GDB to the main
GNU version. The debugging formats are different, so please be sure to use only the latest Arduino toolchain GDB
executable.

8.1 CLI and IDE Note

Because the Arduino IDE doesn’t support interactive debugging, the following sections describe debugging using the
command line. Other IDEs which use GDB in their debug backends should work identically, but you may need to edit
their configuration files or options to enable the remote serial debugging required and to set the standard options. PRs
are happily accepted for updates to this document with additional IDEs!

8.2 Preparing your application for GDB

Applications need to be changed to enable GDB debugging support. This change will add 2-3KB of flash and around
700 bytes of IRAM usage, but should not affect operation of the application.

In your main sketch. ino file, add the following line to the top of the application:

#include <GDBStub.h>

And in the void setup () function ensure the serial port is initialized and call gdbstub_init ():

Serial.begin(115200);
gdbstub_init () ;

Rebuild and reupload your application and it should run exactly as before.

63

//sourceware.org/gdb/download/onlinedocs/gdb/index.html

ESP8266 Arduino Core Documentation, Release 2.5.2

8.3 Starting a Debug Session

Once your application is running, the process to attach a debugger is quite simple: . Close the Arduino Serial Monitor
. Locate Application.ino.elf File . Open a Command Prompt and Start GDB . Apply the GDB configurations . Attach
the Debugger . Debug Away!

8.3.1 Close the Arduino Serial Monitor

Because GDB needs full control of the serial port, you will need to close any Arduino Serial Monitor windows you
may have open. Otherwise GDB will report an error while attempting to debug.

8.3.2 Locate Application.ino.elf File
In order for GDB to debug your application, you need to locate the compiled ELF format version of it (which includes
needed debug symbols).

Under Linux these files are stored in /tmp/arduino_build_« and the following command will help locate the
right file for your app:

’find /tmp —-name "x.elf" -print

Under Windows these files are stored in $userprofile$\AppData\Local\Temp\arduino_build_x* and
the following command will help locate the right file for your app:

’dir $userprofile%\appdatal*.elf /s/b

Note the full path of ELF file that corresponds to your sketch name, it will be needed later once GDB is started.

8.3.3 Open a Command Prompt and Start GDB

Open a terminal or CMD prompt and navigate to the proper ESP8266 toolchain directory.

Linux

~/.arduinol5/packages/esp8266/hardware/xtensa-1x106-elf/bin/xtensa-1x106-elf-gdb

Windows (Using Board Manager version)

$userprofile%\AppData\Local\Arduinol5\packages\esp8266\tools\xtensa-1x106-elf-gcc\2.5.
—0-3-20ed2b9\bin\xtensa-1x106-elf-gdb.exe

Windows (Using Git version)

%userprofile%\Documents\Arduino\hardware\esp8266com\esp8266\tools\xtensa-1x106—
—elf\bin\xtensa-1x106-elf-gdb.exe

Please note the proper GDB name is “xtensa-1x106-elf-gdb”. If you accidentally run “gdb” you may start your own
operating system’s GDB, which will not know how to talk to the ESP8266.

8.3.4 Apply the GDB Configurations

Atthe (gdb) prompt, enter the following options to configure GDB for the ESP8266 memory map and configuration:

64 Chapter 8. Using GDB to Debug Applications

ESP8266 Arduino Core Documentation, Release 2.5.2

set
set
set
set
set
set
mem
mem
mem
mem
mem
mem

remote
remote
remote
remote
remote
remote
0x20000000
0x3££00000
0x40000000
0x40100000
0x40140000
0x60000000

Ox3fefffff
Ox3fffffff
0x400fffff
Ox4013f£fff
OxS5fffffff
0x60001fff

hardware-breakpoint—-1limit 1
hardware-watchpoint-1limit 1
interrupt-on-connect on
kill-packet off
symbol-lookup—-packet off
verbose-resume-packet off

ro cache
rw

cache
cache
cache

ro
rw
ro
rw

set serial baud 115200

Now tell GDB where your compiled ELF file is located:

file /tmp/arduino_build_257110/sketch_dec26a.ino.elf

8.3.5 Attach the Debugger

Once GDB has been configured properly and loaded your debugging symbols, connect it to the ESP with the command
(replace the ttyUSBO or COM9 with your ESP’s serial port):

’ target remote /dev/ttyUSBO

or

’target remote \\.\COM9

At this point GDB will send a stop the application on the ESP8266 and you can begin setting a breakpoint (break
loop) or any other debugging operation.

8.4 Example Debugging Session

Create a new sketch and paste the following code into it:

#include <GDBStub.h>

void setup () {
Serial.begin(115200);
gdbstub_init () ;
Serial.printf("Starting...\n");

void loop () {
static uint32_t cnt = 0;
Serial.printf ("$d\n", cnt++);

delay (100);

Save it and then build and upload to your ESP8266. On the Serial monitor you should see something like

8.4. Example Debugging Session 65

ESP8266 Arduino Core Documentation, Release 2.5.2

Now close the Serial Monitor.

Open a command prompt and find the ELF file:

earlelserver:~$ find /tmp -name "x.elf"

-print

/tmp/arduino_build_257110/testgdb.ino.elf
/tmp/arduino_build_531411/listfiles.ino.elf
/tmp/arduino_build_156712/SDWebServer.ino.elf

In this example there are multiple e1f files found, but we only care about the one we just built, testgdb.ino.elf.

Open up the proper ESP8266-specific GDB

earlel@server:~$ ~/.arduinol5/packages/esp8266/hardware/xtensa-1x106-elf/bin/xtensa-
—~1x106-elf—-gdb

GNU gdb
Copyright

Type

Type

(GDB)

(C)

"show copying"

"show configuration"

8.2.50.20180723-git
2018 Free Software Foundation,
License GPLv3+:
This is free software:
There is NO WARRANTY,

Inc.

GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
you are free to change and redistribute it.

to the extent permitted by law.

For bug reporting instructions,

For help,

Type
(gdb)

type

"help".
"apropos word"

and "show warranty"
This GDB was configured as

for details.

"-—-host=x86_64-1inux-gnu —-target=xtensa-1x106-elf".
for configuration details.

please see:
<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<https://www.gnu.org/software/gdb/documentation/>.

to search for commands related to

"word".

We’re now at the GDB prompt, but nothing has been set up for the ESP8266 and no debug information has been

loaded. Cut-and-paste the setup options:

(gdb) set remote hardware-breakpoint-limit 1
(gdb) set remote hardware-watchpoint-limit 1
(gdb) set remote interrupt-on-connect on
(gdb) set remote kill-packet off

(gdb) set remote symbol-lookup-packet off
(gdb) set remote verbose-resume-packet off
(gdb) mem 0x20000000 0x3fefffff ro cache
(gdb) mem 0x3ff00000 Ox3fffffff rw

(gdb) mem 0x40000000 0x400fffff ro cache
(gdb) mem 0x40100000 0x4013ffff rw cache
(gdb) mem 0x40140000 Ox5fffffff ro cache
(gdb) mem 0x60000000 0x60001fff rw

(gdb) set serial baud 115200

(gdb)

And tell GDB where the debugging info ELF file is located:

66

Chapter 8. Using GDB to Debug Applications

ESP8266 Arduino Core Documentation, Release 2.5.2

(gdb) file /tmp/arduino_build_257110/testgdb.ino.elf
Reading symbols from /tmp/arduino_build_257110/testgdb.ino.elf...done.

Now, connect to the running ESP8266:

(gdb) target remote /dev/ttyUSBO
Remote debugging using /dev/ttyUSBO
0x40000£f68 in 27?2 ()

(gdb)

Don’t worry that GDB doesn’t know what is at our present address, we broke into the code at a random spot and we
could be in an interrupt, in the ROM, or elsewhere. The important bit is that we’re now connected and two things will
now happen: we can debug, and the app’s regular serial output will be displayed on the GDB console..

Continue the running app to see the serial output:

(gdb) cont
Continuing.
74
75
76
77

The app is back running and we can stop it at any time using Ctr1-C:

113

~C

Program received signal SIGINT, Interrupt.
0x40000£68 in 2?2 ()

(gdb)

At this point we can set a breakpoint on the main 1oop () and restart to get into our own code:

(gdb) break loop

Breakpoint 1 at 0x40202e33: file /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino,
—line 10.

(gdb) cont

Continuing.

Note: automatically using hardware breakpoints for read-only addresses.

bcn_timout, ap_probe_send_start

Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 wvoid loop ()
(gdb)

Let’s examine the local variable:

(gdb) next

loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:13
13 Serial.printf ("$d\n", cnt++);

(gdb) print cnt

51 = 114

(gdb)

And change it:

8.4. Example Debugging Session 67

ESP8266 Arduino Core Documentation, Release 2.5.2

$2 = 114

(gdb) set cnt = 2000
(gdb) print cnt

$3 = 2000

(gdb)

And restart the app and see our changes take effect:

(gdb) cont

Continuing.

2000

Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 wvoid loop () {

(gdb) cont

Continuing.

2001

Breakpoint 1, loop () at /home/earle/Arduino/sketch_dec26a/sketch_dec26a.ino:10
10 wvoid loop () |

(gdb)

Looks like we left the breakpoint on loop(), let’s get rid of it and try again:

(gdb) delete

Delete all breakpoints? (y or n) y
(gdb) cont

Continuing.

2002

2003

2004

2005

2006

At this point we can exit GDB with quit or do further debugging.

8.5 ESP8266 Hardware Debugging Limitations

The ESP8266 only supports a single hardware breakpoint and a single hardware data watchpoint. This means only one
breakpoint in user code is allowed at any time. Consider using the t hlo (temporary hardware breakpoint) command in
GDB while debugging instead of the more common break command, since t hb will remove the breakpoint once it
is reached automatically and save you some trouble.

68 Chapter 8. Using GDB to Debug Applications

CHAPTER 9

Boards

9.1 Generic ESP8266 Module

These modules come in different form factors and pinouts. See the page at ESP§266 community wiki for more info:
ESP8266 Module Family.

Usually these modules have no bootstapping resistors on board, insufficient decoupling capacitors, no voltage regula-
tor, no reset circuit, and no USB-serial adapter. This makes using them somewhat tricky, compared to development
boards which add these features.

In order to use these modules, make sure to observe the following:

¢ Provide sufficient power to the module. For stable use of the ESP8266 a power supply with 3.3V and >=
250mA is required. Using the power available from USB to Serial adapter is not recommended, these adapters
typically do not supply enough current to run ESP8266 reliably in every situation. An external supply or regu-
lator alongwith filtering capacitors is preferred.

* Connect bootstapping resistors to GPIO0, GPIO2, GPIO15 according to the schematics below.
* Put ESP8266 into bootloader mode before uploading code.

9.2 Serial Adapter

There are many different USB to Serial adapters / boards. To be able to put ESP8266 into bootloader mode using serial
handshaking lines, you need the adapter which breaks out RTS and DTR outputs. CTS and DSR are not useful for
upload (they are inputs). Make sure the adapter can work with 3.3V IO voltage: it should have a jumper or a switch to
select between 5V and 3.3V, or be marked as 3.3V only.

Adapters based around the following ICs should work:
* FT232RL
* CP2102
* CH340G

69

http://www.esp8266.com/wiki/doku.php?id=esp8266-module-family

ESP8266 Arduino Core Documentation, Release 2.5.2

PL2303-based adapters are known not to work on Mac OS X. See https://github.com/igrr/esptool-ck/issues/9 for more

info.

9.3 Minimal Hardware Setup for Bootloading and Usage

¢ Note

PIN Resistor | Serial Adapter
VCC VCC (3.3V)
GND GND

TX or GPIO2* RX

RX X

GPIOO PullUp DTR

Reset* PullUp RTS

GPIO15* PullDown

CH_PD PullUp

GPIO15 is also named MTDO

* Reset is also named RSBT or REST (adding PullUp improves the stability of the module)

GPIO2 is alternative TX for the boot loader mode

* Directly connecting a pin to VCC or GND is not a substitute for a PullUp or PullDown resistor, doing this
can break upload management and the serial console, instability has also been noted in some cases.

9.4 ESP to Serial

9.4.1 Minimal Hardware Setup for Bootloading only

ESPxx Hardware

¢ Note

PIN Resistor | Serial Adapter
VCC VCC (3.3V)
GND GND

TX or GPIO2 RX

RX X

GPIOO GND

Reset RTS*

GPIO15 PullDown

CH_PD PullUp

* if no RTS is used a manual power toggle is needed

9.4.2 Minimal Hardware Setup for Running only

ESPxx Hardware

70

Chapter 9. Boards

https://github.com/igrr/esptool-ck/issues/9

ESP8266 Arduino Core Documentation, Release 2.5.2

SV3 2V3g ’ ’ -
Power supply
FN s 5l i
- =t Lol I
rH2 2 iy b
&
13 REST TXD E
ETEE ADC RXD =
S CH PD GPIOS —
SR GRPIC1E GPIO4 -
1 GPIO14 GPIOD 3 o
= GPIO12 GPIO2 —
T GRPICT3IGPIC1 S 1
. 4 WITT GO
__C1 LJE1 |
i ESFEZEE_ESP-12 E [
100N H
GND & L
Fig. 1: ESP to Serial
9.4. ESP to Serial 71

ESP8266 Arduino Core Documentation, Release 2.5.2

PIN Resistor | Power supply
VCC VCC (3.3V)
GND GND

GPIOO | PullUp
GPIO15 | PullDown
CH_PD | PullUp

9.5 Minimal

UE1 E_]
ESPS266_ESP-12

Fig. 2: ESP min

9.6 Improved Stability

9.7 Boot Messages and Modes

The ESP module checks at every boot the Pins 0, 2 and 15. based on them its boots in different modes:

GPIO15 | GPIOO | GPIO2 | Mode

ov ov 3.3V Uart Bootloader

ov 3.3V 3.3V Boot sketch (SPI flash)

3.3V X X SDIO mode (not used for Arduino)

at startup the ESP prints out the current boot mode example:

72 Chapter 9. Boards

ESP8266 Arduino Core Documentation, Release 2.5.2

3V3,
‘_+x x +
S LIS vl
12 REST TXD %
? ADC RXD T
CH_PD GPIOS 2—
12 1 Gpio16 GPIO4 |2
% GPIO14 GPIOQ g
-+ GPIO12GPIO2 | —5-
15 1 GPI013GPIO15
—16 1 vece oND
% |
iC1 U1 ‘_l
— ESP8266_ESP-12
100n
GND & &

Fig. 3: ESP improved stability

9.7. Boot Messages and Modes 73

ESP8266 Arduino Core Documentation, Release 2.5.2

rst cause:2, boot mode: (3, 6)

note: - GPIO2 is used as TX output and the internal Pullup is enabled on boot.

9.7.1 rst cause

Number | Description
unknown
normal boot
reset pin
software reset
watchdog reset

AW~ O

9.7.2 boot mode

the first value respects the pin setup of the Pins 0, 2 and 15.

Number | GPIO15 | GPIOO | GPIO2 | Mode

0 ov ov ov Not valid
1 ov ov 3.3V Uart

2 ov 3.3V ov Not valid
3 ov 3.3V 3.3V Flash

4 3.3V ov ov SDIO

5 3.3V ov 3.3V SDIO

6 3.3V 3.3V ov SDIO

7 3.3V 3.3V 3.3V SDIO

note: - number = ((GPIO15 << 2) | (GPIOO << 1) | GPIO2);

9.8 Generic ESP8285 Module

ESP8285 (datasheet) is a multi-chip package which contains ESP8266 and 1MB flash. All points related to bootstrap-
ping resistors and recommended circuits listed above apply to ESP8285 as well.

Note that since ESP8285 has SPI flash memory internally connected in DOUT mode, pins 9 and 10 may be used as
GPIO /12C / PWM pins.

9.9 ESPDuino (ESP-13 Module)

TODO

9.10 Adafruit Feather HUZZAH ESP8266

The Adafruit Feather HUZZAH ESP8266 is an Arduino-compatible Wi-Fi development board powered by Ai-
Thinker’s ESP-12S, clocked at 80 MHz at 3.3V logic. A high-quality SiLabs CP2104 USB-Serial chip is included so

74 Chapter 9. Boards

http://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf

ESP8266 Arduino Core Documentation, Release 2.5.2

that you can upload code at a blistering 921600 baud for fast development time. It also has auto-reset so no noodling
with pins and reset button pressings. A 3.7V Lithium polymer battery connector is included, making it ideal for
portable projects. The Adafruit Feather HUZZAH ESP8266 will automatically recharge a connected battery when
USB power is available.

Product page: https://www.adafruit.com/product/2821

9.11 Invent One

The Invent One is an Arduino-compatible Wi-Fi development board powered by Ai-Thinker’s ESP-12F, clocked at
80 MHz at 3.3V logic. It has an onboard ADC (PCF8591) so that you can have multiple analog inputs to work with.
More information can be found here: https://blog.inventone.ng

Product page: https://inventone.ng

9.12 XinaBox CWO01
The XinaBox CWO1(ESP8266) is an Arduino-compatible Wi-Fi development board powered by an ESP-12F, clocked

at 80 MHz at 3.3V logic. The CWO01 has an onboard RGB LED and 3 xBUS connection ports.
Product page: https://xinabox.cc/products/CW01

9.13 ESPresso Lite 1.0

ESPresso Lite 1.0 (beta version) is an Arduino-compatible Wi-Fi development board powered by Espressif System’s
own ESP8266 WROOM-02 module. It has breadboard-friendly breakout pins with in-built LED, two reset/flash
buttons and a user programmable button . The operating voltage is 3.3VDC, regulated with 800mA maximum current.
Special distinctive features include on-board I2C pads that allow direct connection to OLED LCD and sensor boards.

9.14 ESPresso Lite 2.0

ESPresso Lite 2.0 is an Arduino-compatible Wi-Fi development board based on an earlier V1 (beta version). Re-
designed together with Cytron Technologies, the newly-revised ESPresso Lite V2.0 features the auto-load/auto-
program function, eliminating the previous need to reset the board manually before flashing a new program. It also
feature two user programmable side buttons and a reset button. The special distinctive features of on-board pads for
12C sensor and actuator is retained.

9.15 Phoenix 1.0

Product page: http://www.espert.co

9.16 Phoenix 2.0

Product page: http://www.espert.co

9.11. Invent One 75

https://www.adafruit.com/product/2821
https://blog.inventone.ng
https://inventone.ng
https://xinabox.cc/products/CW01
http://www.espert.co
http://www.espert.co

ESP8266 Arduino Core Documentation, Release 2.5.2

9.17 NodeMCU 0.9 (ESP-12 Module)

9.17.1 Pin mapping

Pin numbers written on the board itself do not correspond to ESP8266 GPIO pin numbers. Constants are defined to
make using this board easier:

static const uint8 t DO = 16;
static const uint8_t D1 = 5;
static const uint8 t D2 = 4;
static const uint8 t D3 = 0;
static const uint8_t D4 = 2;
static const uint8 t D5 = 14;
static const uint8_t D6 = 12;
static const uint8_t D7 = 13;
static const uint8 t D8 = 15;
static const uint8 t D9 = 3;
static const uint8_t D10 = 1;

If you want to use NodeMCU pin 5, use D5 for pin number, and it will be translated to ‘real’ GPIO pin 14.

9.18 NodeMCU 1.0 (ESP-12E Module)

This module is sold under many names for around $6.50 on AliExpress and it’s one of the cheapest, fully integrated
ESP8266 solutions.

It’s an open hardware design with an ESP-12E core and 4 MB of SPI flash.

According to the manufacturer, “with a micro USB cable, you can connect NodeMCU devkit to your laptop and flash
it without any trouble”. This is more or less true: the board comes with a CP2102 onboard USB to serial adapter which
just works, well, the majority of the time. Sometimes flashing fails and you have to reset the board by holding down
FLASH + RST, then releasing FLASH, then releasing RST. This forces the CP2102 device to power cycle and to be
re-numbered by Linux.

The board also features a NCP1117 voltage regulator, a blue LED on GPIO16 and a 220k/100k Ohm voltage divider
on the ADC input pin. The ESP-12E usually has a led connected on GPIO2.

Full pinout and PDF schematics can be found here

9.19 Olimex MOD-WIFI-ESP8266(-DEV)

This board comes with 2 MB of SPI flash and optional accessories (e.g. evaluation board ESP8266-EVB or BAT-BOX
for batteries).

The basic module has three solder jumpers that allow you to switch the operating mode between SDIO, UART and
FLASH.

The board is shipped for FLASH operation mode, with jumpers TDOJP=0, I00JP=1, 102JP=1.

Since jumper IO0JP is tied to GPIOO, which is PIN 21, you’ll have to ground it before programming with a USB to
serial adapter and reset the board by power cycling it.

UART pins for programming and serial I/O are GPIO1 (TXD, pin 3) and GPIO3 (RXD, pin 4).

You can find the board schematics here

76 Chapter 9. Boards

https://github.com/nodemcu/nodemcu-devkit-v1.0
https://github.com/OLIMEX/ESP8266/blob/master/HARDWARE/MOD-WIFI-ESP8266-DEV/MOD-WIFI-ESP8266-DEV_schematic.pdf

ESP8266 Arduino Core Documentation, Release 2.5.2

9.20 SparkFun ESP8266 Thing

Product page: https://www.sparkfun.com/products/13231

9.21 SparkFun ESP8266 Thing Dev

Product page: https://www.sparkfun.com/products/13711

9.22 SweetPea ESP-210

TODO

9.23 LOLIN(WEMOS) D1 R2 & mini

Product page: https://www.wemos.cc/

9.24 LOLIN(WEMOS) D1 mini Pro

Product page: https://www.wemos.cc/

9.25 LOLIN(WEMOS) D1 mini Lite

9.25.1 Parameters in Arduino IDE:

e Card: “WEMOS D1 Mini Lite”

* Flash Size: “1M (512K SPIFES)”
* CPU Frequency: “80 Mhz”
 Upload Speed: “230400”

9.25.2 Power:

* 5V pin : 4.7V 500mA output when the board is powered by USB ; 3.5V-6V input
* 3V3 pin: 3.3V 500mA regulated output
¢ Digital pins : 3.3V 30mA.

9.20. SparkFun ESP8266 Thing

77

https://www.sparkfun.com/products/13231
https://www.sparkfun.com/products/13711
https://www.wemos.cc/
https://www.wemos.cc/

ESP8266 Arduino Core Documentation, Release 2.5.2

9.25.3 links:

* Product page: https://www.wemos.cc/
* Board schematic: https://wiki.wemos.cc/_media/products:d1:sch_d1_mini_lite_v1.0.0.pdf

ESP8285 datasheet: https://www.espressif.com/sites/default/files/Oa-esp8285_datasheet_en_v1.0_20160422.
pdf

* Voltage regulator datasheet: http://pdf-datasheet.datasheet.netdna-cdn.com/pdf-down/M/E/6/
ME®6211-Microne.pdf

9.26 WeMos D1 R1

Product page: https://www.wemos.cc/

9.27 ESPino (ESP-12 Module)

ESPino integrates the ESP-12 module with a 3.3v regulator, CP2104 USB-Serial bridge and a micro USB connector for
easy programming. It is designed for fitting in a breadboard and has an RGB Led and two buttons for easy prototyping.

For more information about the hardware, pinout diagram and programming procedures, please see the datasheet.

Product page: http://www.espino.io/en

9.28 ThaiEasyElec’s ESPino

ESPino by ThaiEasyElec using WROOM-02 module from Espressif Systems with 4 MB Flash.

We will update an English description soon. - Product page: http://thaieasyelec.com/
products/wireless-modules/wifi-modules/espino- wifi-development-board-detail.html - Schematics:
www.thaieasyelec.com/downloads/ETEEO052/ETEE052_ESPino_Schematic.pdf - Dimensions: http://thaieasyelec.
com/downloads/ETEE052/ETEE052_ESPino_Dimension.pdf - Pinouts: http://thaieasyelec.com/downloads/
ETEEO52/ETEE052_ESPino_User_Manual_TH_v1_0_20160204.pdf (Please see pg. 8)

9.29 Wifinfo

Wiflnfo integrates the ESP-12 or ESP-07+Ext antenna module with a 3.3v regulator and the hardware to be able to
measure French telemetry issue from ERDF powering meter serial output. It has a USB connector for powering, an
RGB WS2812 Led, 4 pins I2C connector to fit OLED or sensor, and two buttons + FTDI connector and auto reset
feature.

For more information, please see Wiflnfo related blog entries, github and community forum.

9.30 Arduino

TODO

78 Chapter 9. Boards

https://www.wemos.cc/
https://wiki.wemos.cc/_media/products:d1:sch_d1_mini_lite_v1.0.0.pdf
https://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf
https://www.espressif.com/sites/default/files/0a-esp8285_datasheet_en_v1.0_20160422.pdf
http://pdf-datasheet.datasheet.netdna-cdn.com/pdf-down/M/E/6/ME6211-Microne.pdf
http://pdf-datasheet.datasheet.netdna-cdn.com/pdf-down/M/E/6/ME6211-Microne.pdf
https://www.wemos.cc/
https://github.com/makerlabmx/ESPino-tools/raw/master/Docs/ESPino-Datasheet-EN.pdf
http://www.espino.io/en
http://thaieasyelec.com/products/wireless-modules/wifi-modules/espino-wifi-development-board-detail.html
http://thaieasyelec.com/products/wireless-modules/wifi-modules/espino-wifi-development-board-detail.html
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Dimension.pdf
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_Dimension.pdf
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_User_Manual_TH_v1_0_20160204.pdf
http://thaieasyelec.com/downloads/ETEE052/ETEE052_ESPino_User_Manual_TH_v1_0_20160204.pdf
http://hallard.me/category/wifinfo/
https://github.com/hallard/WifInfo
https://community.hallard.me/category/16/wifinfo

ESP8266 Arduino Core Documentation, Release 2.5.2

9.31 4D Systems gen4 loD Range

gend-IoD Range of ESP8266 powered Display Modules by 4D Systems.
2.4”,2.8” and 3.2” TFT LCD with uSD card socket and Resistive Touch. Chip Antenna + uFL Connector.
Datasheet and associated downloads can be found on the 4D Systems product page.

The gen4-IoD range can be programmed using the Arduino IDE and also the 4D Systems Workshop4 IDE, which
incorporates many additional graphics benefits. GFX4d library is available, along with a number of demo applications.

 Product page: http://www.4dsystems.com.au/product/gen4-IoD

9.32 Digistump Oak

The Oak requires an Serial Adapter for a serial connection or flashing; its micro USB port is only for power.

To make a serial connection, wire the adapter’s TX to P3, RX to P4, and GND to GND. Supply 3.3v from the serial
adapter if not already powered via USB.

To put the board into bootloader mode, configure a serial connection as above, connect P2 to GND, then re-apply
power. Once flashing is complete, remove the connection from P2 to GND, then re-apply power to boot into normal
mode.

9.33 WiFiduino

Product page: https://wifiduino.com/esp8266

9.34 Amperka WiFi Slot

Product page: http://wiki.amperka.ru/wifi-slot

9.35 Seeed Wio Link

Wio Link is designed to simplify your IoT development. It is an ESP8266 based open-source Wi-Fi development
board to create IoT applications by virtualizing plug-n-play modules to RESTful APIs with mobile APPs. Wio Link
is also compatible with the Arduino IDE.

Please DO NOTICE that you MUST pull up pin 15 to enable the power for Grove ports, the board is designed like this
for the purpose of peripherals power management.

Product page: https://www.seeedstudio.com/Wio-Link-p-2604.html

9.36 ESPectro Core

ESPectro Core is ESP8266 development board as the culmination of our 3+ year experience in exploring and devel-
oping products with ESP§266 MCU.

9.31. 4D Systems gen4 loD Range 79

http://www.4dsystems.com.au/product/gen4-IoD
https://wifiduino.com/esp8266
http://wiki.amperka.ru/wifi-slot
https://www.seeedstudio.com/Wio-Link-p-2604.html

ESP8266 Arduino Core Documentation, Release 2.5.2

Initially designed for kids in mind, everybody should be able to use it. Yet it’s still hacker-friendly as we break out all
ESP8266 ESP-12F pins.

More details at https://shop.makestro.com/product/espectrocore/

80 Chapter 9. Boards

https://shop.makestro.com/product/espectrocore/

cHAaPTER 10

FAQ

The purpose of this FAQ / Troubleshooting is to respond to questions commonly asked in Issues section and on
ESP8266 Community forum.

Where possible we are going right to the answer and provide it within one or two paragraphs. If it takes more than
that, you will see a link to “Read more” details.

Please feel free to contribute if you believe that some frequent issues are not covered below.

10.1 1am getting “espcomm_sync failed” error when trying to upload
my ESP. How to resolve this issue?

This message indicates issue with uploading ESP module over a serial connection. There are couple of possible causes,
that depend on the type of your module, if you use separate USB to serial converter.

Read more.

10.2 Why esptool is not listed in “Programmer” menu? How do | up-
load ESP without it?

Do not worry about “Programmer” menu of Arduino IDE. It doesn’t matter what is selected in it — upload now always
defaults to using esptool.

Ref. #138, #653 and #739.

10.3 My ESP crashes running some code. How to troubleshoot it?

The code may crash because of s/w bug or issue with your h/w. Before entering an issue report, please perform initial
troubleshooting.

81

https://github.com/esp8266/Arduino/issues
https://www.esp8266.com/
https://github.com/esp8266/Arduino/issues/138
https://github.com/esp8266/Arduino/issues/653
https://github.com/esp8266/Arduino/issues/739

ESP8266 Arduino Core Documentation, Release 2.5.2

Read more.

10.4 How can | get some extra KBs in flash ?

e Using »printf () with floats is enabled by default. Some KBs of flash can be saved by using the option
—-—-nofloat with the boards generator:

./tools/boards.txt.py —-—-nofloat --boardsgen
 Use the debug level option NoAssert-NDEBUG (in the Tools menu)

Read more.

10.5 About WPS

From release 2.4.2 and ahead, not using WPS will give an exra ~4.5KB in heap.

In release 2.4.2 only, WPS is disabled by default and the board generator is required to enable it:
./tools/boards.txt.py ——allowWPS —--boardsgen

Read more.

For platformIO (and maybe other build environments), you will also need to add the build flag: -D
NO_EXTRA_4K_HEAP

This manual selection is not needed starting from 2.5.0 (and in git version). WPS is always available, and not using it
will give an extra ~4.5KB compared to releases until 2.4.1 included.

10.6 This Arduino library doesn’t work on ESP. How do | make it
work?

You would like to use this Arduino library with ESP8266 and it does not perform. It is not listed among libraries
verified to work with ESP8266.

Read more.

10.7 In the IDE, for ESP-12E that has 4M flash, | can choose 4M (1M
SPIFFS) or 4M (3M SPIFFS). No matter what | select, the IDE tells
me the maximum code space is about 1M. Where does my flash
go?

The reason we cannot have more than 1MB of code in flash has to do with a hardware limitation. Flash cache hardware
on the ESP8266 only allows mapping 1MB of code into the CPU address space at any given time. You can switch
mapping offset, so technically you can have more than 1MB total, but switching such “banks” on the fly is not easy
and efficient, so we don’t bother doing that. Besides, no one has so far complained about IMB of code space being
insufficient for practical purposes.

82 Chapter 10. FAQ

ESP8266 Arduino Core Documentation, Release 2.5.2

The option to choose 3M or 1M SPIFFS is to optimize the upload time. Uploading 3MB takes a long time so sometimes
you can just use 1MB. Other 2MB of flash can still be used with ESP . flashRead and ESP.flashWrite APIsif
necessary.

10.8 | have observed a case when ESP.restart() doesn’t work. What
is the reason for that?

You will see this issue only if serial upload was not followed by a physical reset (e.g. power-on reset). For a device
being in that state ESP . restart will not work. Apparently the issue is caused by one of internal registers not being
properly updated until physical reset. This issue concerns only serial uploads. OTA uploads are not affected. If you
are using ESP . restart, the work around is to reset ESP once after each serial upload.

Ref. #1017, #1107, #1782

10.9 How to resolve “Board generic (platform esp8266, package
esp8266) is unknown” error?

This error may pop up after switching between staging and stable esp8266 / Arduino package installations, or after
upgrading the package version Read more.

10.10 How to clear TCP PCBs in time-wait state ?

This is not needed anymore:

PCBs in time-wait state are limited to 5 and removed when that number is exceeded.
Ref. IwIP-v1.4, IwIP-v2

For reference:

Time-wait PCB state helps TCP not confusing two consecutive connections with the same (s-ip,s-port,d-ip,d-port)
when the first is already closed but still having duplicate packets lost in internet arriving later during the second.
Artificially clearing them is a workaround to help saving precious heap.

The following lines are compatible with both IwIP versions:

// no need for #include

struct tcp_pcb;

extern struct tcp_pcbx tcp_tw_pcbs;

extern "C" wvoid tcp_abort (struct tcp_pcb* pcb);

void tcpCleanup (wvoid) {
while (tcp_tw_pcbs)
tcp_abort (tcp_tw_pcbs) ;
}

Ref. #1923

10.8. | have observed a case when ESP.restart() doesn’t work. What is the reason for that? 83

https://github.com/esp8266/Arduino/issues/1017#issuecomment-200605576
https://github.com/esp8266/Arduino/issues/1017#issuecomment-200605576
https://github.com/esp8266/Arduino/issues/1017
https://github.com/esp8266/Arduino/issues/1107
https://github.com/esp8266/Arduino/issues/1782
https://github.com/esp8266/Arduino#staging-version-
https://github.com/esp8266/Arduino#stable-version-
https://github.com/esp8266/Arduino/commit/07f4d4c241df2c552899857f39a4295164f686f2#diff-f8258e71e25fb9985ca3799e3d8b88ecR399
https://github.com/d-a-v/esp82xx-nonos-linklayer/commit/420960dfc0dbe07114f7364845836ac333bc84f7
https://github.com/esp8266/Arduino/issues/1923

ESP8266 Arduino Core Documentation, Release 2.5.2

10.11 Why is there a board generator and what about it ?

The board generator is a python script originally intended to ease the Arduino IDE’s boards.txt configuration file about
the multitude of available boards, especially when common parameters have to be updated for all of them.

This script is also used to manage uncommon options that are currently not available in the IDE menu.

Read more.

84 Chapter 10. FAQ

cHAPTER 11

Exception Causes (EXCCAUSE)

EXCCAUSE Code | Cause Name Cause Description

0 IllegallnstructionCause Illegal instruction

1 SyscallCause SYSCALL instruction

2 InstructionFetchErrorCause Processor internal physical address or data error during instruction fetch

3 LoadStoreErrorCause Processor internal physical address or data error during load or store

4 LevelllnterruptCause Level-1 interrupt as indicated by set level-1 bits in the INTERRUPT register
5 AllocaCause MOVSP instruction, if caller’s registers are not in the register file

6 IntegerDivideByZeroCause QUOS, QUOU, REMS, or REMU divisor operand is zero

7 Reserved for Tensilica

8 PrivilegedCause Attempt to execute a privileged operation when CRING != 0

9 LoadStoreAlignmentCause Load or store to an unaligned address

10..11 Reserved for Tensilica

12 InstrPIFDateErrorCause PIF data error during instruction fetch

13 LoadStorePIFDataErrorCause | Synchronous PIF data error during LoadStore access

14 InstrPIFAddrErrorCause PIF address error during instruction fetch

15 LoadStorePIFAddrErrorCause | Synchronous PIF address error during LoadStore access

16 InstTLBMissCause Error during Instruction TLB refill

17 InstTLBMultiHitCause Multiple instruction TLB entries matched

18 InstFetchPrivilegeCause An instruction fetch referenced a virtual address at a ring level less than CRI]
19 Reserved for Tensilica

20 InstFetchProhibitedCause An instruction fetch referenced a page mapped with an attribute that does not
21..23 Reserved for Tensilica

24 LoadStoreTLBMissCause Error during TLB refill for a load or store

25 LoadStoreTLBMultiHitCause | Multiple TLB entries matched for a load or store

26 LoadStorePrivilegeCause A load or store referenced a virtual address at a ring level less than CRING
27 Reserved for Tensilica

28 LoadProhibitedCause A load referenced a page mapped with an attribute that does not permit loads
29 StoreProhibitedCause A store referenced a page mapped with an attribute that does not permit
30..31 Reserved for Tensilica

85

ESP8266 Arduino Core Documentation, Release 2.5.2

Table 1 — continued from previous page

EXCCAUSE Code | Cause Name Cause Description
32..39 CoprocessornDisabled Coprocessor n instruction when cpn disabled. n varies 0..7 as the cause varie:
40..63 Reserved

Infos from Xtensa Instruction Set Architecture (ISA) Reference Manual

86

Chapter 11. Exception Causes (EXCCAUSE)

cHAPTER 12

Debugging

12.1 Introduction

Since 2.1.0-rc1 the core includes a Debugging feature that is controllable over the IDE menu.

The new menu points manage the real-time Debug messages.

12.1.1 Requirements

For usage of the debugging a Serial connection is required (Serial or Seriall).
The Serial Interface need to be initialized in the setup ().
Set the Serial baud rate as high as possible for your Hardware setup.

Minimum sketch to use debugging:

void setup () {
Serial.begin(115200);
}

void loop () {
}

87

ESP8266 Arduino Core Documentation, Release 2.5.2

12.1.2 Usage

1. Select the Serial interface for the Debugging messages:

[y B £

(5]

1 |woid setup()
Serial .begir
1
void loop()
1

sketch_janO6a &

{

Datei Bearbeiten Sketch |Werkzeuge | Hilfe

{

sketch_janO6a

Automatische Formatierung Strg
Sketch archivieren
Kodierung korrigieren & neu laden

Serieller Monitor Strg

ESP2266 Sketch Data Upload

Platine: "Generic ESP2266 Module"
Flash Mode: "CIO"

Flash Frequency: "80MHz"

Upload Using: "Serial”

CPU Frequency: "20 MHz"

Flash Size: "5312K (64K SPIFFS)"
Debug port: "Serial”
Debug Level: "Core + i"
Feset Method: "ck"
Upload Speed: "113200"

Port

Prograrnmer: "AVRISP mkll"

Bootloader brennen

Generic EF

88

Chapter 12. Debugging

ESP8266 Arduino Core Documentation, Release 2.5.2

sketch_janOba

Datei Bearbeiten Sketch |Werkzeuge | Hilfe

Automatische Formatierung Strg-

Sketch archivieren

sketch_jan06a & Kodierung korrigieren & neu laden

L woid zetup() { Serieller Monitor Strg:
Serial.begin(l

3 E5P8266 Sketch Data Upload

4]

5 Platine: "Generic ESPE266 Module"
& veid loop() { Flash Mode: "QI0"

=1 Flash Frequency: "20MHz"

Upload Using: "Serial”

CPU Frequency: "20 MHz"
Flash Size: "512K (64K SPIFFS)"
Debug port: "Serial”

Debug Level: "Core +[:‘giFi"
Reset Method: "ck”

Upload Speed: "115200"

Port

Prograrnmer: "AVRISP mkll"

Bootloader brennen

Generic odule, Serial, 80 WH

2. Select which type / level you want debug messages for:
3. Check if the Serial interface is initialized in setup () (see Requirements)
4. Flash sketch

5. Check the Serial Output

12.2 Informations

It work with every sketch that enables the Serial interface that is selected as debug port.

12.2. Informations 89

ESP8266 Arduino Core Documentation, Release 2.5.2

The Serial interface can still be used normal in the Sketch.

The debug output is additional and will not disable any interface from usage in the sketch.
12.2.1 For Developers

For the debug handling uses defines.

The defined are set by command line.

Debug Port

The port has the define DEBUG_ESP_PORT possible value: - Disabled: define not existing - Serial: Serial - Seriall:
Seriall

Debug Level

All defines for the different levels starts with DEBUG_ESP__
a full list can be found here in the boards.txt

Example for own debug messages

The debug messages will be only shown when the Debug Port in the IDE menu is set.

#ifdef DEBUG_ESP_PORT

#define DEBUG_MSG(...) DEBUG_ESP_PORT.printf(__ VA ARGS _)
#else

#define DEBUG_MSG(...)

#endif

void setup () {
Serial.begin(115200);

delay (3000);
DEBUG_MSG ("bootup...\n");
}

void loop () {
DEBUG_MSG ("loop %d\n", millis());
delay (1000);

90 Chapter 12. Debugging

https://github.com/esp8266/Arduino/blob/master/tools/boards.txt.py#L1045-L1047

cHAPTER 13

Stack Dumps

13.1 Introduction

If the ESP crashes the Exception Cause will be shown and the current stack will be dumped.

Example:

Exception (0): epcl=0x402103f4 epc2=0x00000000 epc3=0x00000000 excvaddr=0x00000000_,
—depc=0x00000000

ctx: sys
sp: 3ffffcl0 end: 3fffffb0 offset: 01al

>>>stack>>>

3fff£fdb0: 40223e00 3fff6£f50 00000010 60000600
3ffffdcO: 00000001 4021£774 3fffc250 4000050c
3fff£fddo: 400043d5 00000030 00000016 ffffffff
3ffffdel: 400044ab 3fffc718 3ffffed0 08000000
3fff£fdf0: 60000200 08000000 00000003 00000000
3ffffel0: 0000ffff 00000001 04000002 003£d000
3ffffel0: 3£f££7188 000003fd 3f£f£2564 00000030
3ffffe20: 40101709 00000008 00000008 00000020
3ffffe30: ¢1948db3 394c5e70 7£2060f2 c6balc87
3ffffed0: 3£f££7058 00000001 40238d41 3fff6ff0
3ffffe50: 3f£f£f6£50 00000010 60000600 00000020
3ffffe60: 402301a8 3fff7098 3f£f£f7014 40238c77
3ffffe70: 4022fb6c 40230ebe 3ffflabb 3f£f£f6£00
3ffffe80: 3ffffec8 00000010 40231061 3ff£f0£f90
3ffffe90: 3fff6848 3ffed0cO 60000600 3fffeaeld
3ffffeal: 3f£ff0£f90 3f£ff0£f90 3f£f£f6848 3ff£6d40
3ffffeb0: 3fff28e8 40101233 d634fela fffeffff
3ffffecO: 00000001 00000000 4022d5d6 3fff6848
3ffffed0l: 00000002 4000410f 3fff2394 3fff6848
3ffffee0: 3fffc718 40004a3c 000003fd 3f£f£7188

(continues on next page)

91

ESP8266 Arduino Core Documentation, Release 2.5.2

(continued from previous page)

3ffffef0: 3fffc718
3f£f£££00: 000003£fd
3fff£f£f10: 00001000
3ff£f£f£20: 000003fd
3ff£f££30: ff£f£££00
3ff£f££40: 0000001c
3ff£f£f£50: 4021d224
3fffff60: 00000001
3ff£f££70: 4021c071
3ff£f£f£80: 4021c0bb6
3ff£f££90: 3ffecfdl
3fffffal: 40000£49
<<<stack<<<

40101510
4021dz2e7
4021d37d
60000600
55aabbaa
0000008a
3ffecf90
4021c2e9
3ffecf84
3fffdab0
3fffdab0
40000£49

00000378
00000378
3ff£2564
003£d000
00000312
0000006d
00000000
00000003
3ffecf30
00000000
00000000
3fffdab0

3ffflabb
000003ff
000003ff
3fff2564
0000001c
000003ff
3ffed0cO
3fff1238
0026a2b0
3fffdcb0
3fffdccO
40000£49

The first number after Except ion gives the cause of the reset. a full ist of all causes can be found /ere the hex after

are the stack dump.

13.1.1 Decode

It’s possible to decode the Stack to readable information. For more info see the Esp Exception Decoder tool.

92

Chapter 13. Stack Dumps

https://github.com/me-no-dev/EspExceptionDecoder

ESP8266 Arduino Core Documentation, Release 2.5.2

@ Arduino File Edit Sketch Tools Help

Auto Format
Archive Sketch
Fix Encoding & Reload

ESP_RF1Z2B_RCY Serial Monitor
<ESPR2EENLFL. h> Serial Plotter

1 #include

2 #include <Arduino0TA_hs]| .

3 #include <5PI.hs ESP Exception Decoder

4 #include <Mire.h> ESP8266 Sketch Data Upload

5_ #include <5501386. hh-

6 [include RFMLZE_ESP.h> Board: "Generic ESP8266 Module" >

! #include "OneWire.t

8 Flash Mode: "QIO" >

O #define EMABLE_SERIAL_DEBUG Flash Size: "4M (3M SPIFFS)" [
10 #define RFM1ZE_NODE_ID 1 " "
11 #define RFM1ZB_NETWORK_ID 100 Debug port: "Disabled >
12 Debug Level: "None" >
13 const char® ssid = “nbis-test”; Reset Method: "nodemcu” S
14 const chor® password = "1234567890"; Flash Frequency: "80MHz" >
16 # #ADC_MODE(ADC_TOUT) Upload Using: "Serial" [
1 33D1386 display; CPU Frequency: "160 MHz" >
18 RFM1Z2E radio; s -
19 OneWire ds(16); Upload Speed: "115200 >
20 Port: "fdevfcu.usbserial-A50285BI" []
P

>

22 uint8_t ds_addr[8]; Programmer: "AVRISP mkil"
23 uint8_t ds_data[12];

24 typedef enum { DS_IDLE, DS_START, D5
25 ds_state_t ds_stote = DS_IDLE;

Burn Bootloader

Fig. 1: ESP Exception Decoder

13.1. Introduction 93

ESP8266 Arduino Core Documentation, Release 2.5.2

94

Chapter 13. Stack Dumps

cHAPTER 14

Using Eclipse with Arduino ESP8266

14.1 What to Download

e arduino IDE
¢ Eclipse IDE for C/C++ Developers

e Java

14.2 Setup Arduino

See the Readme

14.3 Setup Eclipse

e step 1

e step 2

* go to Window —> preferences —> Arduino

¢ add as private hardware path the Part to the ESP8266

example private hardware path

Windows: C:\Users\ [username] \AppData\Roaming\Arduinol5\packages\esp8266\hardware
Linux: /home/[username]/.arduinol5/packages/esp8266/hardware

95

https://www.arduino.cc/en/Main/Software
https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen3a
https://www.java.com/
https://github.com/esp8266/Arduino#installing-with-boards-manager
https://www.baeyens.it/eclipse/how_to.shtml#/c
https://www.baeyens.it/eclipse/how_to.shtml#/e

ESP8266 Arduino Core Documentation, Release 2.5.2

14.4 Eclipse wont build

if eclipse dont find the path to the Compiler add to the platform.txt after:

’version:1.6.4

this:

runtime.tools.xtensa-1x106-elf-gcc.path={runtime.platform.path}/../../../tools/xtensa-
—1x106-elf-gcc/1.20.0-26-gb404fb9
runtime.tools.esptool.path={runtime.platform.path}/../../../tools/esptool/0.4.4

Note: - the path may changed, check the current version. - each update over the Arduino IDE will remove the fix -
may not needed in future if Eclipse Plugin get an Update

96 Chapter 14. Using Eclipse with Arduino ESP8266

	Installing
	Boards Manager
	Using git version

	Reference
	Digital IO
	Analog input
	Analog output
	Timing and delays
	Serial
	Progmem

	Libraries
	WiFi(ESP8266WiFi library)
	Ticker
	EEPROM
	I2C (Wire library)
	SPI
	SoftwareSerial
	ESP-specific APIs
	mDNS and DNS-SD responder (ESP8266mDNS library)
	SSDP responder (ESP8266SSDP)
	DNS server (DNSServer library)
	Servo
	Improved EEPROM library for ESP (ESP_EEPROM)
	Other libraries (not included with the IDE)

	Filesystem
	Flash layout
	File system limitations
	Uploading files to file system
	File system object (SPIFFS)
	Filesystem information structure
	Directory object (Dir)
	File object

	ESP8266WiFi library
	Introduction
	Class Description
	Diagnostics
	What’s Inside?

	OTA Updates
	Introduction
	Arduino IDE
	Web Browser
	HTTP Server
	Stream Interface
	Updater class

	Guide to PROGMEM on ESP8266 and Arduino IDE
	Intro
	Declare a flash string within code block.
	Functions to read back from PROGMEM
	How do I declare a global flash string and use it?
	How do I use inline flash strings?
	How do I declare and use data in PROGMEM?
	How do I declare some data in PROGMEM, and retrieve one byte from it.
	In summary

	Using GDB to Debug Applications
	CLI and IDE Note
	Preparing your application for GDB
	Starting a Debug Session
	Example Debugging Session
	ESP8266 Hardware Debugging Limitations

	Boards
	Generic ESP8266 Module
	Serial Adapter
	Minimal Hardware Setup for Bootloading and Usage
	ESP to Serial
	Minimal
	Improved Stability
	Boot Messages and Modes
	Generic ESP8285 Module
	ESPDuino (ESP-13 Module)
	Adafruit Feather HUZZAH ESP8266
	Invent One
	XinaBox CW01
	ESPresso Lite 1.0
	ESPresso Lite 2.0
	Phoenix 1.0
	Phoenix 2.0
	NodeMCU 0.9 (ESP-12 Module)
	NodeMCU 1.0 (ESP-12E Module)
	Olimex MOD-WIFI-ESP8266(-DEV)
	SparkFun ESP8266 Thing
	SparkFun ESP8266 Thing Dev
	SweetPea ESP-210
	LOLIN(WEMOS) D1 R2 & mini
	LOLIN(WEMOS) D1 mini Pro
	LOLIN(WEMOS) D1 mini Lite
	WeMos D1 R1
	ESPino (ESP-12 Module)
	ThaiEasyElec’s ESPino
	WifInfo
	Arduino
	4D Systems gen4 IoD Range
	Digistump Oak
	WiFiduino
	Amperka WiFi Slot
	Seeed Wio Link
	ESPectro Core

	FAQ
	I am getting “espcomm_sync failed” error when trying to upload my ESP. How to resolve this issue?
	Why esptool is not listed in “Programmer” menu? How do I upload ESP without it?
	My ESP crashes running some code. How to troubleshoot it?
	How can I get some extra KBs in flash ?
	About WPS
	This Arduino library doesn’t work on ESP. How do I make it work?
	In the IDE, for ESP-12E that has 4M flash, I can choose 4M (1M SPIFFS) or 4M (3M SPIFFS). No matter what I select, the IDE tells me the maximum code space is about 1M. Where does my flash go?
	I have observed a case when ESP.restart() doesn’t work. What is the reason for that?
	How to resolve “Board generic (platform esp8266, package esp8266) is unknown” error?
	How to clear TCP PCBs in time-wait state ?
	Why is there a board generator and what about it ?

	Exception Causes (EXCCAUSE)
	Debugging
	Introduction
	Informations

	Stack Dumps
	Introduction

	Using Eclipse with Arduino ESP8266
	What to Download
	Setup Arduino
	Setup Eclipse
	Eclipse wont build

